2,949 research outputs found

    SOS-Hankel Tensors: Theory and Application

    Full text link
    Hankel tensors arise from signal processing and some other applications. SOS (sum-of-squares) tensors are positive semi-definite symmetric tensors, but not vice versa. The problem for determining an even order symmetric tensor is an SOS tensor or not is equivalent to solving a semi-infinite linear programming problem, which can be done in polynomial time. On the other hand, the problem for determining an even order symmetric tensor is positive semi-definite or not is NP-hard. In this paper, we study SOS-Hankel tensors. Currently, there are two known positive semi-definite Hankel tensor classes: even order complete Hankel tensors and even order strong Hankel tensors. We show complete Hankel tensors are strong Hankel tensors, and even order strong Hankel tensors are SOS-Hankel tensors. We give several examples of positive semi-definite Hankel tensors, which are not strong Hankel tensors. However, all of them are still SOS-Hankel tensors. Does there exist a positive semi-definite non-SOS-Hankel tensor? The answer to this question remains open. If the answer to this question is no, then the problem for determining an even order Hankel tensor is positive semi-definite or not is solvable in polynomial-time. An application of SOS-Hankel tensors to the positive semi-definite tensor completion problem is discussed. We present an ADMM algorithm for solving this problem. Some preliminary numerical results on this algorithm are reported

    Carving Out the Space of 4D CFTs

    Get PDF
    We introduce a new numerical algorithm based on semidefinite programming to efficiently compute bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. Using our algorithm, we dramatically improve previous bounds on a number of CFT quantities, particularly for theories with global symmetries. In the case of SO(4) or SU(2) symmetry, our bounds severely constrain models of conformal technicolor. In N=1 superconformal theories, we place strong bounds on dim(Phi*Phi), where Phi is a chiral operator. These bounds asymptote to the line dim(Phi*Phi) <= 2 dim(Phi) near dim(Phi) ~ 1, forbidding positive anomalous dimensions in this region. We also place novel upper and lower bounds on OPE coefficients of protected operators in the Phi x Phi OPE. Finally, we find examples of lower bounds on central charges and flavor current two-point functions that scale with the size of global symmetry representations. In the case of N=1 theories with an SU(N) flavor symmetry, our bounds on current two-point functions lie within an O(1) factor of the values realized in supersymmetric QCD in the conformal window.Comment: 60 pages, 22 figure

    Algorithms for Positive Semidefinite Factorization

    Full text link
    This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an mm-by-nn nonnegative matrix XX and an integer kk, the PSD factorization problem consists in finding, if possible, symmetric kk-by-kk positive semidefinite matrices {A1,...,Am}\{A^1,...,A^m\} and {B1,...,Bn}\{B^1,...,B^n\} such that Xi,j=trace(AiBj)X_{i,j}=\text{trace}(A^iB^j) for i=1,...,mi=1,...,m, and j=1,...nj=1,...n. PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size k=1+log2(n)k=1+ \lceil \log_2(n) \rceil for the regular nn-gons when n=5n=5, 88 and 1010. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices AiA^i and BjB^j have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality Ai=BiA^i=B^i is required for all ii).Comment: 21 pages, 3 figures, 3 table
    corecore