2,557 research outputs found

    Quality Enhancement for Underwater Images using Various Image Processing Techniques: A Survey

    Get PDF
    Underwater images are essential to identify the activity of underwater objects. It played a vital role to explore and utilizing aquatic resources. The underwater images have features such as low contrast, different noises, and object imbalance due to lack of light intensity. CNN-based in-deep learning approaches have improved underwater low-resolution photos during the last decade. Nevertheless, still, those techniques have some problems, such as high MSE, PSNT and high SSIM error rate. They solve the problem using different experimental analyses; various methods are studied that effectively treat different underwater image distorted scenes and improve contrast and color deviation compared to other algorithms. In terms of the color richness of the resulting images and the execution time, there are still deficiencies with the latest algorithm. In future work, the structure of our algorithm will be further adjusted to shorten the execution time, and optimization of the color compensation method under different color deviations will also be the focus of future research. With the wide application of underwater vision in different scientific research fields, underwater image enhancement can play an increasingly significant role in the process of image processing in underwater research and underwater archaeology. Most of the target images of the current algorithms are shallow water images. When the artificial light source is added to deep water images, the raw images will face more diverse noises, and image enhancement will face more challenges. As a result, this study investigates the numerous existing systems used for quality enhancement of underwater mages using various image processing techniques. We find various gaps and challenges of current systems and build the enhancement of this research for future improvement. Aa a result of this overview is to define the future problem statement to enhance this research and overcome the challenges faced by previous researchers. On other hand also improve the accuracy in terms of reducing MSE and enhancing PSNR etc

    Physics-Aware Semi-Supervised Underwater Image Enhancement

    Full text link
    Underwater images normally suffer from degradation due to the transmission medium of water bodies. Both traditional prior-based approaches and deep learning-based methods have been used to address this problem. However, the inflexible assumption of the former often impairs their effectiveness in handling diverse underwater scenes, while the generalization of the latter to unseen images is usually weakened by insufficient data. In this study, we leverage both the physics-based underwater Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE). To this end, we propose a novel Physics-Aware Dual-Stream Underwater Image Enhancement Network, i.e., PA-UIENet, which comprises a Transmission Estimation Steam (T-Stream) and an Ambient Light Estimation Stream (A-Stream). This network fulfills the UIE task by explicitly estimating the degradation parameters of the IFM. We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data. Our method performs better than, or at least comparably to, eight baselines across five testing sets in the degradation estimation and UIE tasks. This should be due to the fact that it not only can model the degradation but also can learn the characteristics of diverse underwater scenes.Comment: 12 pages, 5 figure

    Fast underwater color correction using integral images

    Get PDF
    Underwater image processing has to face the problem of loss of color and contrast that occurs when images are acquired at a certain depth and range. The longer wavelengths of sunlight such as red or orange are rapidly absorbed by the water body, while the shorter ones have a higher scattering. Thereby, at larger distance, the scene colors appear bluish-greenish, as well as blurry. The loss of color increases not only vertically through the water column, but also horizontally, so that the subjects further away from the camera appear colorless and indistinguishable, suffering from lack of visible details. This paper presents a fast enhancement method for color correction of underwater images. The method is based on the gray-world assumption applied in the Ruderman-opponent color space and is able to cope with non-uniformly illuminated scenes. Integral images are exploited by the proposed method to perform fast color correction, taking into account locally changing luminance and chrominance. Due to the low-complexity cost this method is suitable for real-time applications ensuring realistic colors of the objects, more visible details and enhanced visual quality.Peer Reviewe

    Assessing Seagrass Restoration Actions through a Micro-Bathymetry Survey Approach (Italy, Mediterranean Sea)

    Get PDF
    Underwater photogrammetry provides a means of generating high-resolution products such as dense point clouds, 3D models, and orthomosaics with centimetric scale resolutions. Underwater photogrammetric models can be used to monitor the growth and expansion of benthic communities, including the assessment of the conservation status of seagrass beds and their change over time (time lapse micro-bathymetry) with OBIA classifications (Object-Based Image Analysis). However, one of the most complex aspects of underwater photogrammetry is the accuracy of the 3D models for both the horizontal and vertical components used to estimate the surfaces and volumes of biomass. In this study, a photogrammetry-based micro-bathymetry approach was applied to monitor Posidonia oceanica restoration actions. A procedure for rectifying both the horizontal and vertical elevation data was developed using soundings from high-resolution multibeam bathymetry. Furthermore, a 3D trilateration technique was also tested to collect Ground Control Points (GCPs) together with reference scale bars, both used to estimate the accuracy of the models and orthomosaics. The root mean square error (RMSE) value obtained for the horizontal planimetric measurements was 0.05 m, while the RMSE value for the depth was 0.11 m. Underwater photogrammetry, if properly applied, can provide very high-resolution and accurate models for monitoring seagrass restoration actions for ecological recovery and can be useful for other research purposes in geological and environmental monitoring

    UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer

    Full text link
    Underwater images often exhibit poor quality, imbalanced coloration, and low contrast due to the complex and intricate interaction of light, water, and objects. Despite the significant contributions of previous underwater enhancement techniques, there exist several problems that demand further improvement: (i) Current deep learning methodologies depend on Convolutional Neural Networks (CNNs) that lack multi-scale enhancement and also have limited global perception fields. (ii) The scarcity of paired real-world underwater datasets poses a considerable challenge, and the utilization of synthetic image pairs risks overfitting. To address the aforementioned issues, this paper presents a Multi-scale Transformer-based Network called UWFormer for enhancing images at multiple frequencies via semi-supervised learning, in which we propose a Nonlinear Frequency-aware Attention mechanism and a Multi-Scale Fusion Feed-forward Network for low-frequency enhancement. Additionally, we introduce a specialized underwater semi-supervised training strategy, proposing a Subaqueous Perceptual Loss function to generate reliable pseudo labels. Experiments using full-reference and non-reference underwater benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of both quantity and visual quality
    corecore