132 research outputs found

    Localizing Region-Based Level-set Contouring for Common Carotid Artery in Ultrasonography

    Get PDF
     This work developed a fully-automated and efficient method for detecting contour of common carotid artery in the cross section view of two-dimensional B-mode sonography. First, we applied a preprocessing filter to the ultrasound image for the sake of reducing speckle. An adaptive initial contouring method was then performed to obtain the initial contour for level set segmentation. Finally, the localizing region-based level set segmentation automatically extracted the precise contours of common carotid artery. The proposed method evaluated 130 ultrasound images from three healthy volunteers and the segmentation results were compared to the boundaries outlined by an expert. Preliminary results showed that the method described here could identify the contour of common carotid artery with satisfactory accuracy in this dataset

    Vision-based estimation of volume status in ultrasound

    Get PDF
    This thesis provides a proof-of-concept approach to the analysis of ultrasound imagery using machine learning and computer vision for the purposes of tracking relative changes in apparent circulating blood volume. Data for the models was collected from a simulation which involved having healthy subjects recline at angles between 0 and 90 degrees to induce changes in the size of the internal jugular vein (IJV) resulting from gravity. Ultrasound video clips were then captured of the IJV. The clips were segmented, followed by feature generation, feature selection and training of predictive models to determine the angle of inclination. This research provides insight into the feasibility of using automated analysis techniques to enhance portable ultrasound as a monitoring tool. In a dataset of 34 subjects the angle was predicted within 11 degrees. An accuracy of 89% was achieved for high/low classification

    Computer-based estimation of circulating blood volume from ultrasound imagery

    Get PDF
    Detection of relative changes in circulating blood volume is important to guide resuscitation and manage a variety of medical conditions including sepsis, trauma, dialysis and congestive heart failure. In recent years, ultrasound images of inferior vena cava (IVC) and internal jugular vein (IJV) have been used to assess volume status and guide fluid administration. This approach has limitations in that a skilled operator must perform repeated measurements over time. In this dissertation, we develop semi-automatic image processing algorithms for estimation and tracking of the IVC anterior-posterior (AP)-diameter and IJV crosssectional area in ultrasound videos. The proposed algorithms are based on active contours (ACs), where either the IVC AP-diameter or IJV CSA is estimated by minimization of an energy functional. More specifically, in chapter 2, we propose a novel energy functional based on the third centralized moment and show that it outperforms the functionals that are traditionally used with active contours (ACs). We combine the proposed functional with the polar contour representation and use it for segmentation of the IVC. In chapters 3 and 4, we propose active shape models based on ellipse; circle; and rectangles fitted inside the IVC as efficient, consistent and novel approaches to tracking and approximating the anterior-posterior (AP)-diameter even in the context of poor quality images. The proposed algorithms are based on a novel heuristic evolution functional that works very well with ultrasound images. In chapter 3, we show that the proposed active circle algorithm accurately, estimates the IVC AP-diameter. Although the estimated AP-diameter is very close to its actual value, the clinicians define the IVC AP-diameter as the largest vertical diameter of the IVC contour which deviates from its actual definition. To solve this problem and estimate the AP-diameter in the same way as its clinical definition, in chapter 4, we propose the active rectangle algorithm, where clinically measured AP-diameter is modeled as the height of a vertical thin rectangle. The results show that the AP-diameter estimated by the active rectangle algorithm is closer to its clinically measurement than the active circle and active ellipse algorithms. In chapter 5, we propose a novel adaptive polar active contour (Ad-PAC) algorithm for the segmentation and tracking of the IJV in ultrasound videos. In the proposed algorithm, the parameters of the Ad-PAC algorithm are adapted based on the results of segmentation in previous frames. The Ad-PAC algorithm has been applied to 65 ultrasound videos and shown to be a significant improvement over existing segmentation algorithms. So far, all proposed algorithms are semi-automatic as they need an operator to either locate the vessel in the first frame, or manually segment the first first and work automatically for the next frames. In chapter 6, we proposed a novel algorithm to automatically locate the vessel in ultrasound videos. The proposed algorithm is based on convolutional neural networks (CNNs) and is trained and applied for IJV videos. In this chapter we show that although the proposed algorithm is trained for data acquired from healthy subjects, it works efficiently for the data collected from coronary heart failure (CHF) patients without additional training. Finally, conclusions are drawn and possible extensions are discussed in chapter 7

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    Hypothesis Validation of Far-Wall Brightness in Carotid-Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level-Set Segmentation and Registration

    Get PDF
    Intima-media thickness (IMT) is now being considered as an indicator of atherosclerosis. Our group has developed several feature-based IMT measurement algorithms such as the Completely Automated Layer EXtraction (CALEX) (which is a class of patented AtheroEdge Systems from Global Biomedical Technologies, Inc., CA, USA). These methods are based on the hypothesis that the highest pixel intensities are in the far wall of the common carotid artery (CCA) or the internal carotid artery (ICA). In this paper, we verify that this hypothesis holds true for B-mode longitudinal ultrasound (US) images of the carotid wall. This patented methodology consists of generating the composite image (the arithmetic sum of images) from the database by first registering the carotid image frames with respect to a nearly straight carotid-artery frame from the same database using: 1) B-spline-based nonrigid registration and 2) affine registration. Prior to registration, we segment the carotid-artery lumen using a level-set-based algorithm followed by morphological image processing. The binary lumen images are registered, and the transformations are applied to the original grayscale CCA images. We evaluated our technique using a database of 200 common carotid images of normal and pathologic carotids. The composite image presented the highest intensity distribution in the far wall of the CCA/ICA, validating our hypothesis. We have also demonstrated the accuracy and improvement in the IMT segmentation result with our CALEX 3.0 system. The CALEX system, when run on newly acquired US images, shows the IMT error of about 30 mu m. Thus, we have shown that the CALEX algorithm is able to exploit the far-wall brightness for accurate IMT measurements

    Classification approach for diagnosis of arteriosclerosis using B-mode ultrasound carotid images

    Get PDF
    Tese de mestrado. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 201
    corecore