790 research outputs found

    A segmental framework for fully-unsupervised large-vocabulary speech recognition

    Get PDF
    Zero-resource speech technology is a growing research area that aims to develop methods for speech processing in the absence of transcriptions, lexicons, or language modelling text. Early term discovery systems focused on identifying isolated recurring patterns in a corpus, while more recent full-coverage systems attempt to completely segment and cluster the audio into word-like units---effectively performing unsupervised speech recognition. This article presents the first attempt we are aware of to apply such a system to large-vocabulary multi-speaker data. Our system uses a Bayesian modelling framework with segmental word representations: each word segment is represented as a fixed-dimensional acoustic embedding obtained by mapping the sequence of feature frames to a single embedding vector. We compare our system on English and Xitsonga datasets to state-of-the-art baselines, using a variety of measures including word error rate (obtained by mapping the unsupervised output to ground truth transcriptions). Very high word error rates are reported---in the order of 70--80% for speaker-dependent and 80--95% for speaker-independent systems---highlighting the difficulty of this task. Nevertheless, in terms of cluster quality and word segmentation metrics, we show that by imposing a consistent top-down segmentation while also using bottom-up knowledge from detected syllable boundaries, both single-speaker and multi-speaker versions of our system outperform a purely bottom-up single-speaker syllable-based approach. We also show that the discovered clusters can be made less speaker- and gender-specific by using an unsupervised autoencoder-like feature extractor to learn better frame-level features (prior to embedding). Our system's discovered clusters are still less pure than those of unsupervised term discovery systems, but provide far greater coverage.Comment: 15 pages, 6 figures, 8 table

    Topic Identification for Speech without ASR

    Full text link
    Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limited conditions, the manually transcribed speech required to develop standard ASR systems can be severely limited or unavailable. In this paper, we investigate alternative unsupervised solutions to obtaining tokenizations of speech in terms of a vocabulary of automatically discovered word-like or phoneme-like units, without depending on the supervised training of ASR systems. Moreover, using automatic phoneme-like tokenizations, we demonstrate that a convolutional neural network based framework for learning spoken document representations provides competitive performance compared to a standard bag-of-words representation, as evidenced by comprehensive topic ID evaluations on both single-label and multi-label classification tasks.Comment: 5 pages, 2 figures; accepted for publication at Interspeech 201

    Neural approaches to spoken content embedding

    Full text link
    Comparing spoken segments is a central operation to speech processing. Traditional approaches in this area have favored frame-level dynamic programming algorithms, such as dynamic time warping, because they require no supervision, but they are limited in performance and efficiency. As an alternative, acoustic word embeddings -- fixed-dimensional vector representations of variable-length spoken word segments -- have begun to be considered for such tasks as well. However, the current space of such discriminative embedding models, training approaches, and their application to real-world downstream tasks is limited. We start by considering ``single-view" training losses where the goal is to learn an acoustic word embedding model that separates same-word and different-word spoken segment pairs. Then, we consider ``multi-view" contrastive losses. In this setting, acoustic word embeddings are learned jointly with embeddings of character sequences to generate acoustically grounded embeddings of written words, or acoustically grounded word embeddings. In this thesis, we contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs). We improve model training in terms of both efficiency and performance. We take these developments beyond English to several low-resource languages and show that multilingual training improves performance when labeled data is limited. We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition. Finally, we show how our embedding approaches compare with and complement more recent self-supervised speech models.Comment: PhD thesi

    Leveraging Pretrained Image-text Models for Improving Audio-Visual Learning

    Full text link
    Visually grounded speech systems learn from paired images and their spoken captions. Recently, there have been attempts to utilize the visually grounded models trained from images and their corresponding text captions, such as CLIP, to improve speech-based visually grounded models' performance. However, the majority of these models only utilize the pretrained image encoder. Cascaded SpeechCLIP attempted to generate localized word-level information and utilize both the pretrained image and text encoders. Despite using both, they noticed a substantial drop in retrieval performance. We proposed Segmental SpeechCLIP which used a hierarchical segmental speech encoder to generate sequences of word-like units. We used the pretrained CLIP text encoder on top of these word-like unit representations and showed significant improvements over the cascaded variant of SpeechCLIP. Segmental SpeechCLIP directly learns the word embeddings as input to the CLIP text encoder bypassing the vocabulary embeddings. Here, we explore mapping audio to CLIP vocabulary embeddings via regularization and quantization. As our objective is to distill semantic information into the speech encoders, we explore the usage of large unimodal pretrained language models as the text encoders. Our method enables us to bridge image and text encoders e.g. DINO and RoBERTa trained with uni-modal data. Finally, we extend our framework in audio-only settings where only pairs of semantically related audio are available. Experiments show that audio-only systems perform close to the audio-visual system
    • …
    corecore