11 research outputs found

    Cryptanalysis and improvement of password-authenticated key agreement for session initiation protocol using smart cards

    Get PDF
    Session Initiation Protocol (SIP) is one of the most commonly used protocols for handling sessions for Voice over Internet Protocol (VoIP)-based communications, and the security of SIP is becoming increasingly important. Recently, Zhang et al. proposed a password authenticated key agreement protocol for SIP by using smart cards to protect the VoIP communications between users. Their protocol provided some unique features, such as mutual authentication, no password table needed, and password updating freely. In this study, we performed cryptanalysis of Zhang et al.'s protocol and found that their protocol was vulnerable to the impersonation attack although the protocol could withstand several other attacks. A malicious attacker could compute other users’ privacy keys and then impersonated the users to cheat the SIP server. Furthermore, we proposed an improved password authentication key agreement protocol for SIP, which overcame the weakness of Zhang et al.’s protocol and was more suitable for VoIP communications

    Efficient and flexible password authenticated key agreement for Voice over Internet Protocol session initiation protocol using smart card

    Get PDF
    Providing a suitable key agreement protocol for session initiation protocol is crucial to protecting the communication among the users over the open channel. This paper presents an efficient and flexible password authenticated key agreement protocol for session initiation protocol associated with Voice over Internet Protocol. The proposed protocol has many unique properties, such as session key agreement, mutual authentication, password updating function and the server not needing to maintain a password or verification table, and so on. In addition, our protocol is secure against the replay attack, the impersonation attack, the stolen-verifier attack, the man-in-the-middle attack, the Denning–Sacco attack, and the offline dictionary attack with or without the smart card

    A New Efficient Authenticated and Key Agreement Scheme for SIP Using Digital Signature Algorithm on Elliptic Curves, Journal of Telecommunications and Information Technology, 2017, nr 2

    Get PDF
    Voice over Internet Protocol (VoIP) has been recently one of the more popular applications in Internet technology. It benefits lower cost of equipment, operation, and better integration with data applications than voice communications over telephone networks. However, the voice packets delivered over the Internet are not protected. The session initiation protocol (SIP) is widely used signaling protocol that controls communications on the Internet, typically using hypertext transport protocol (HTTP) digest authentication, which is vulnerable to many forms of attacks. This paper proposes a new secure authentication and key agreement scheme based on Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) named (ECDSA). Security analysis demonstrates that the proposed scheme can resist various attacks and it can be applied to authenticate the users with different SIP domains

    An energy efficient authenticated key agreement protocol for SIP-based green VoIP networks

    Get PDF
    Voice over Internet Protocol (VoIP) is spreading across the market rapidly due to its characteristics such as low cost, flexibility implementation, and versatility of new applications etc. However, the voice packets transmitted over the Internet are not protected in most VoIP environments, and then the user’s information could be easily compromised by various malicious attacks. So an energy-efficient authenticated key agreement protocol for Session Initial Protocol (SIP) should be provided to ensure the confidentiality and integrity of data communications over VoIP networks. To simplify the authentication process, several protocols adopt a verification table to achieve mutual authentication, but the protocols require the SIP server to maintain a large verification table which not only increases energy consumption but also leads to some security issues. Although several attempts have been made to address the intractable problems, designing an energy-efficient authenticated key agreement protocol for SIP-based green VoIP networks is still a challenging task. In this study, we propose an efficient authentication protocol for SIP by using smartcards based on elliptic curve cryptography. With the proposed protocol, the SIP server needs not to store a password or verification table in its database, and so no energy is required for the maintenance of the verification table. Security analysis demonstrates that the proposed protocol can resist various attacks and provides efficient password updating. Furthermore, the experimental results show that the proposed protocol increases efficiency in comparison with other related protocols

    Robust and efficient password authenticated key agreement with user anonymity for session initiation protocol-based communications

    Get PDF
    A suitable key agreement protocol plays an essential role in protecting the communications over open channels among users using Voice over Internet Protocol (VoIP). This paper presents a robust and flexible password authenticated key agreement protocol with user anonymity for Session Initiation Protocol (SIP) used by VoIP communications. Security analysis demonstrates that our protocol enjoys many unique properties, such as user anonymity, no password table, session key agreement, mutual authentication, password updating freely and conveniently revoking lost smartcards etc. Furthermore, our protocol can resist the replay attack, the impersonation attack, the stolen-verifier attack, the man-in-middle attack, the Denning-Sacco attack, and the offline dictionary attack with or without smartcards. Finally, performance analysis shows that our protocol is more suitable for practical application in comparison with other related protocols

    Security of Streaming Media Communications with Logistic Map and Self-Adaptive Detection-Based Steganography

    Get PDF
    Voice over IP (VoIP) is finding its way into several applications, but its security concerns still remain. This paper shows how a new self-adaptive steganographic method can ensure the security of covert VoIP communications over the Internet. In this study an Active Voice Period Detection algorithm is devised for PCM codec to detect whether a VoIP packet carries active or inactive voice data, and the data embedding location in a VoIP stream is chosen randomly according to random sequences generated from a logistic chaotic map. The initial parameters of the chaotic map and the selection of where to embed the message are negotiated between the communicating parties. Steganography experiments on active and inactive voice periods were carried out using a VoIP communications system. Performance evaluation and security analysis indicates that the proposed VoIP steganographic scheme can withstand statistical detection, and achieve secure real-time covert communications with high speech quality and negligible signal distortion

    Robust and Efficient Authentication Scheme for Session Initiation Protocol

    Get PDF
    The session initiation protocol (SIP) is a powerful application-layer protocol which is used as a signaling one for establishing, modifying, and terminating sessions among participants. Authentication is becoming an increasingly crucial issue when a user asks to access SIP services. Hitherto, many authentication schemes have been proposed to enhance the security of SIP. In 2014, Arshad and Nikooghadam proposed an enhanced authentication and key agreement scheme for SIP and claimed that their scheme could withstand various attacks. However, in this paper, we show that Arshad and Nikooghadam’s authentication scheme is still susceptible to key-compromise impersonation and trace attacks and does not provide proper mutual authentication. To conquer the flaws, we propose a secure and efficient ECC-based authentication scheme for SIP. Through the informal and formal security analyses, we demonstrate that our scheme is resilient to possible known attacks including the attacks found in Arshad et al.’s scheme. In addition, the performance analysis shows that our scheme has similar or better efficiency in comparison with other existing ECC-based authentication schemes for SIP

    A Secured Load Mitigation and Distribution Scheme for Securing SIP Server

    Get PDF
    Managing the performance of the Session Initiation Protocol (SIP) server under heavy load conditions is a critical task in a Voice over Internet Protocol (VoIP) network. In this paper, a two-tier model is proposed for the security, load mitigation, and distribution issues of the SIP server. In the first tier, the proposed handler segregates and drops the malicious traffic. The second tier provides a uniform load of distribution, using the least session termination time (LSTT) algorithm. Besides, the mean session termination time is minimized by reducing the waiting time of the SIP messages. Efficiency of the LSTT algorithm is evaluated through the experimental test bed by considering with and without a handler. The experimental results establish that the proposed two-tier model improves the throughput and the CPU utilization. It also reduces the response time and error rate while preserving the quality of multimedia session delivery. This two-tier model provides robust security, dynamic load distribution, appropriate server selection, and session synchronization

    A lightweight privacy preserving authenticated key agreement protocol for SIP-based VoIP

    Get PDF
    Session Initiation Protocol (SIP) is an essential part of most Voice over Internet Protocol (VoIP) architecture. Although SIP provides attractive features, it is exposed to various security threats, and so an efficient and secure authentication scheme is sought to enhance the security of SIP. Several attempts have been made to address the tradeoff problem between security and efficiency, but designing a successful authenticated key agreement protocol for SIP is still a challenging task from the viewpoint of both performance and security, because performance and security as two critical factors affecting SIP applications always seem contradictory. In this study, we employ biometrics to design a lightweight privacy preserving authentication protocol for SIP based on symmetric encryption, achieving a delicate balance between performance and security. In addition, the proposed authentication protocol can fully protect the privacy of biometric characteristics and data identity, which has not been considered in previous work. The completeness of the proposed protocol is demonstrated by Gong, Needham, and Yahalom (GNY) logic. Performance analysis shows that our proposed protocol increases efficiency significantly in comparison with other related protocols
    corecore