15,697 research outputs found

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator

    An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a modelling tool for processes with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues, which impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids, and robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analysing the speed of the travelling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator

    Efficient multistep methods for tempered fractional calculus: Algorithms and Simulations

    Full text link
    In this work, we extend the fractional linear multistep methods in [C. Lubich, SIAM J. Math. Anal., 17 (1986), pp.704--719] to the tempered fractional integral and derivative operators in the sense that the tempered fractional derivative operator is interpreted in terms of the Hadamard finite-part integral. We develop two fast methods, Fast Method I and Fast Method II, with linear complexity to calculate the discrete convolution for the approximation of the (tempered) fractional operator. Fast Method I is based on a local approximation for the contour integral that represents the convolution weight. Fast Method II is based on a globally uniform approximation of the trapezoidal rule for the integral on the real line. Both methods are efficient, but numerical experimentation reveals that Fast Method II outperforms Fast Method I in terms of accuracy, efficiency, and coding simplicity. The memory requirement and computational cost of Fast Method II are O(Q)O(Q) and O(QnT)O(Qn_T), respectively, where nTn_T is the number of the final time steps and QQ is the number of quadrature points used in the trapezoidal rule. The effectiveness of the fast methods is verified through a series of numerical examples for long-time integration, including a numerical study of a fractional reaction-diffusion model
    • …
    corecore