24,750 research outputs found

    Screening Rules for Convex Problems

    Get PDF
    We propose a new framework for deriving screening rules for convex optimization problems. Our approach covers a large class of constrained and penalized optimization formulations, and works in two steps. First, given any approximate point, the structure of the objective function and the duality gap is used to gather information on the optimal solution. In the second step, this information is used to produce screening rules, i.e. safely identifying unimportant weight variables of the optimal solution. Our general framework leads to a large variety of useful existing as well as new screening rules for many applications. For example, we provide new screening rules for general simplex and L1L_1-constrained problems, Elastic Net, squared-loss Support Vector Machines, minimum enclosing ball, as well as structured norm regularized problems, such as group lasso

    An Algorithmic Framework for Computing Validation Performance Bounds by Using Suboptimal Models

    Full text link
    Practical model building processes are often time-consuming because many different models must be trained and validated. In this paper, we introduce a novel algorithm that can be used for computing the lower and the upper bounds of model validation errors without actually training the model itself. A key idea behind our algorithm is using a side information available from a suboptimal model. If a reasonably good suboptimal model is available, our algorithm can compute lower and upper bounds of many useful quantities for making inferences on the unknown target model. We demonstrate the advantage of our algorithm in the context of model selection for regularized learning problems

    GAP Safe screening rules for sparse multi-task and multi-class models

    Full text link
    High dimensional regression benefits from sparsity promoting regularizations. Screening rules leverage the known sparsity of the solution by ignoring some variables in the optimization, hence speeding up solvers. When the procedure is proven not to discard features wrongly the rules are said to be \emph{safe}. In this paper we derive new safe rules for generalized linear models regularized with â„“1\ell_1 and â„“1/â„“2\ell_1/\ell_2 norms. The rules are based on duality gap computations and spherical safe regions whose diameters converge to zero. This allows to discard safely more variables, in particular for low regularization parameters. The GAP Safe rule can cope with any iterative solver and we illustrate its performance on coordinate descent for multi-task Lasso, binary and multinomial logistic regression, demonstrating significant speed ups on all tested datasets with respect to previous safe rules.Comment: in Proceedings of the 29-th Conference on Neural Information Processing Systems (NIPS), 201
    • …
    corecore