87,098 research outputs found

    Comparative Study And Analysis Of Quality Based Multibiometric Technique Using Fuzzy Inference System

    Get PDF
    Biometric is a science and technology of measuring and analyzing biological data i.e. physical or behavioral traits which is able to uniquely recognize a person from others. Prior studies of biometric verification systems with fusion of several biometric sources have been proved to be outstanding over single biometric system. However, fusion approach without considering the quality information of the data used will affect the system performance where in some cases the performances of the fusion system may become worse compared to the performances of either one of the single systems. In order to overcome this limitation, this study proposes a quality based fusion scheme by designing a fuzzy inference system (FIS) which is able to determine the optimum weight to combine the parameter for fusion systems in changing conditions. For this purpose, fusion systems which combine two modalities i.e. speech and lip traits are experimented. For speech signal, Mel Frequency Cepstral Coefficient (MFCC) is used as features while region of interest (ROI) of lip image is employed as lip features. Support vector machine (SVM) is then executed as classifier to the verification system. For validation, common fusion schemes i.e. minimum rule, maximum rule, simple sum rule, weighted sum rule are compared to the proposed quality based fusion scheme. From the experimental results at 35dB SNR of speech and 0.8 quality density of lip, the EER percentages for speech, lip, minimum rule, maximum rule, simple sum rule, weighted sum rule systems are observed as 5.9210%, 37.2157%, 33.2676%, 31.1364%, 4.0112% and 14.9023%, respectively compared to the performances of sugeno-type FIS and mamdani-type FIS i.e. 1.9974% and 1.9745%

    Human abnormal behavior impact on speaker verification systems

    Get PDF
    Human behavior plays a major role in improving human-machine communication. The performance must be affected by abnormal behavior as systems are trained using normal utterances. The abnormal behavior is often associated with a change in the human emotional state. Different emotional states cause physiological changes in the human body that affect the vocal tract. Fear, anger, or even happiness we recognize as a deviation from a normal behavior. The whole spectrum of human-machine application is susceptible to behavioral changes. Abnormal behavior is a major factor, especially for security applications such as verification systems. Face, fingerprint, iris, or speaker verification is a group of the most common approaches to biometric authentication today. This paper discusses human normal and abnormal behavior and its impact on the accuracy and effectiveness of automatic speaker verification (ASV). The support vector machines classifier inputs are Mel-frequency cepstral coefficients and their dynamic changes. For this purpose, the Berlin Database of Emotional Speech was used. Research has shown that abnormal behavior has a major impact on the accuracy of verification, where the equal error rate increase to 37 %. This paper also describes a new design and application of the ASV system that is much more immune to the rejection of a target user with abnormal behavior.Web of Science6401274012

    Is my configuration any good: checking usability in an interactive sensor-based activity monitor

    Get PDF
    We investigate formal analysis of two aspects of usability in a deployed interactive, configurable and context-aware system: an event-driven, sensor-based homecare activity monitor system. The system was not designed from formal requirements or specification: we model the system as it is in the context of an agile development process. Our aim was to determine if formal modelling and analysis can contribute to improving usability, and if so, which style of modelling is most suitable. The purpose of the analysis is to inform configurers about how to interact with the system, so the system is more usable for participants, and to guide future developments. We consider redundancies in configuration rules defined by carers and participants and the interaction modality of the output messages.Two approaches to modelling are considered: a deep embedding in which devices, sensors and rules are represented explicitly by data structures in the modelling language and non-determinism is employed to model all possible device and sensor states, and a shallow embedding in which the rules and device and sensor states are represented directly in propositional logic. The former requires a conventional machine and a model-checker for analysis, whereas the latter is implemented using a SAT solver directly on the activity monitor hardware. We draw conclusions about the role of formal models and reasoning in deployed systems and the need for clear semantics and ontologies for interaction modalities

    From Monologue to Dialogue: Natural Language Generation in OVIS

    Get PDF
    This paper describes how a language generation system that was originally designed for monologue generation, has been adapted for use in the OVIS spoken dialogue system. To meet the requirement that in a dialogue, the system's utterances should make up a single, coherent dialogue turn, several modifications had to be made to the system. The paper also discusses the influence of dialogue context on information status, and its consequences for the generation of referring expressions and accentuation
    corecore