7,946 research outputs found

    Facial Expression Recognition

    Get PDF

    Optical flow estimation using steered-L1 norm

    Get PDF
    Motion is a very important part of understanding the visual picture of the surrounding environment. In image processing it involves the estimation of displacements for image points in an image sequence. In this context dense optical flow estimation is concerned with the computation of pixel displacements in a sequence of images, therefore it has been used widely in the field of image processing and computer vision. A lot of research was dedicated to enable an accurate and fast motion computation in image sequences. Despite the recent advances in the computation of optical flow, there is still room for improvements and optical flow algorithms still suffer from several issues, such as motion discontinuities, occlusion handling, and robustness to illumination changes. This thesis includes an investigation for the topic of optical flow and its applications. It addresses several issues in the computation of dense optical flow and proposes solutions. Specifically, this thesis is divided into two main parts dedicated to address two main areas of interest in optical flow. In the first part, image registration using optical flow is investigated. Both local and global image registration has been used for image registration. An image registration based on an improved version of the combined Local-global method of optical flow computation is proposed. A bi-lateral filter was used in this optical flow method to improve the edge preserving performance. It is shown that image registration via this method gives more robust results compared to the local and the global optical flow methods previously investigated. The second part of this thesis encompasses the main contribution of this research which is an improved total variation L1 norm. A smoothness term is used in the optical flow energy function to regularise this function. The L1 is a plausible choice for such a term because of its performance in preserving edges, however this term is known to be isotropic and hence decreases the penalisation near motion boundaries in all directions. The proposed improved L1 (termed here as the steered-L1 norm) smoothness term demonstrates similar performance across motion boundaries but improves the penalisation performance along such boundaries

    Analysis of 3D Face Reconstruction

    No full text
    This thesis investigates the long standing problem of 3D reconstruction from a single 2D face image. Face reconstruction from a single 2D face image is an ill posed problem involving estimation of the intrinsic and the extrinsic camera parameters, light parameters, shape parameters and the texture parameters. The proposed approach has many potential applications in the law enforcement, surveillance, medicine, computer games and the entertainment industries. This problem is addressed using an analysis by synthesis framework by reconstructing a 3D face model from identity photographs. The identity photographs are a widely used medium for face identi cation and can be found on identity cards and passports. The novel contribution of this thesis is a new technique for creating 3D face models from a single 2D face image. The proposed method uses the improved dense 3D correspondence obtained using rigid and non-rigid registration techniques. The existing reconstruction methods use the optical ow method for establishing 3D correspondence. The resulting 3D face database is used to create a statistical shape model. The existing reconstruction algorithms recover shape by optimizing over all the parameters simultaneously. The proposed algorithm simplifies the reconstruction problem by using a step wise approach thus reducing the dimension of the parameter space and simplifying the opti- mization problem. In the alignment step, a generic 3D face is aligned with the given 2D face image by using anatomical landmarks. The texture is then warped onto the 3D model by using the spatial alignment obtained previously. The 3D shape is then recovered by optimizing over the shape parameters while matching a texture mapped model to the target image. There are a number of advantages of this approach. Firstly, it simpli es the optimization requirements and makes the optimization more robust. Second, there is no need to accurately recover the illumination parameters. Thirdly, there is no need for recovering the texture parameters by using a texture synthesis approach. Fourthly, quantitative analysis is used for improving the quality of reconstruction by improving the cost function. Previous methods use qualitative methods such as visual analysis, and face recognition rates for evaluating reconstruction accuracy. The improvement in the performance of the cost function occurs as a result of improvement in the feature space comprising the landmark and intensity features. Previously, the feature space has not been evaluated with respect to reconstruction accuracy thus leading to inaccurate assumptions about its behaviour. The proposed approach simpli es the reconstruction problem by using only identity images, rather than placing eff ort on overcoming the pose, illumination and expression (PIE) variations. This makes sense, as frontal face images under standard illumination conditions are widely available and could be utilized for accurate reconstruction. The reconstructed 3D models with texture can then be used for overcoming the PIE variations

    Generalized least squares-based parametric motion estimation and segmentation

    Get PDF
    El análisis del movimiento es uno de los campos más importantes de la visión por computador. Esto es debido a que el mundo real está en continuo movimiento y es obvio que podremos obtener mucha más información de escenas en movimiento que de escenas estáticas. En esta tesis se ha trabajado principalmente en desarrollar algoritmos de estimación de movimiento para su aplicación a problemas de registrado de imágenes y a problemas de segmentación del movimiento. Uno de los principales objetivos de este trabajo es desarrollar una técnica de registrado de imágenes de gran exactitud, tolerante a outliers y que sea capaz de realizar su labor incluso en la presencia de deformaciones de gran magnitud tales como traslaciones, rotaciones, cambios de escala, cambios de iluminación globales y no espacialmente uniformes, etc. Otro de los objetivos de esta tesis es trabajar en problemas de estimación y la segmentación del movimiento en secuencias de dos imágenes de forma casi simultánea y sin conocimiento a priori del número de modelos de movimiento presentes. Los experimentos mostrados en este trabajo demuestran que los algoritmos propuestos en esta tesis obtienen resultados de gran exactitud.This thesis proposes several techniques related with the motion estimation problem. In particular, it deals with global motion estimation for image registration and motion segmentation. In the first case, we will suppose that the majority of the pixels of the image follow the same motion model, although the possibility of a large number of outliers are also considered. In the motion segmentation problem, the presence of more than one motion model will be considered. In both cases, sequences of two consecutive grey level images will be used. A new generalized least squares-based motion estimator will be proposed. The proposed formulation of the motion estimation problem provides an additional constraint that helps to match the pixels using image gradient information. That is achieved thanks to the use of a weight for each observation, providing high weight values to the observations considered as inliers, and low values to the ones considered as outliers. To avoid falling in a local minimum, the proposed motion estimator uses a Feature-based method (SIFT-based) to obtain good initial motion parameters. Therefore, it can deal with large motions like translation, rotations, scales changes, viewpoint changes, etc. The accuracy of our approach has been tested using challenging real images using both affine and projective motion models. Two Motion Estimator techniques, which use M-Estimators to deal with outliers into a iteratively reweighted least squared-based strategy, have been selected to compare the accuracy of our approach. The results obtained have showed that the proposed motion estimator can obtain as accurate results as M-Estimator-based techniques and even better in most cases. The problem of estimating accurately the motion under non-uniform illumination changes will also be considered. A modification of the proposed global motion estimator will be proposed to deal with this kind of illumination changes. In particular, a dynamic image model where the illumination factors are functions of the localization will be used replacing the brightens constancy assumption allowing for a more general and accurate image model. Experiments using challenging images will be performed showing that the combination of both techniques is feasible and provides accurate estimates of the motion parameters even in the presence of strong illumination changes between the images. The last part of the thesis deals with the motion estimation and segmentation problem. The proposed algorithm uses temporal information, by using the proposed generalized least-squares motion estimation process and spatial information by using an iterative region growing algorithm which classifies regions of pixels into the different motion models present in the sequence. In addition, it can extract the different moving regions of the scene while estimating its motion quasi-simultaneously and without a priori information of the number of moving objects in the scene. The performance of the algorithm will be tested on synthetic and real images with multiple objects undergoing different types of motion

    Single View Reconstruction for Human Face and Motion with Priors

    Get PDF
    Single view reconstruction is fundamentally an under-constrained problem. We aim to develop new approaches to model human face and motion with model priors that restrict the space of possible solutions. First, we develop a novel approach to recover the 3D shape from a single view image under challenging conditions, such as large variations in illumination and pose. The problem is addressed by employing the techniques of non-linear manifold embedding and alignment. Specifically, the local image models for each patch of facial images and the local surface models for each patch of 3D shape are learned using a non-linear dimensionality reduction technique, and the correspondences between these local models are then learned by a manifold alignment method. Local models successfully remove the dependency of large training databases for human face modeling. By combining the local shapes, the global shape of a face can be reconstructed directly from a single linear system of equations via least square. Unfortunately, this learning-based approach cannot be successfully applied to the problem of human motion modeling due to the internal and external variations in single view video-based marker-less motion capture. Therefore, we introduce a new model-based approach for capturing human motion using a stream of depth images from a single depth sensor. While a depth sensor provides metric 3D information, using a single sensor, instead of a camera array, results in a view-dependent and incomplete measurement of object motion. We develop a novel two-stage template fitting algorithm that is invariant to subject size and view-point variations, and robust to occlusions. Starting from a known pose, our algorithm first estimates a body configuration through temporal registration, which is used to search the template motion database for a best match. The best match body configuration as well as its corresponding surface mesh model are deformed to fit the input depth map, filling in the part that is occluded from the input and compensating for differences in pose and body-size between the input image and the template. Our approach does not require any makers, user-interaction, or appearance-based tracking. Experiments show that our approaches can achieve good modeling results for human face and motion, and are capable of dealing with variety of challenges in single view reconstruction, e.g., occlusion

    Generalized least squares-based parametric motion estimation and segmentation

    Get PDF
    El análisis del movimiento es uno de los campos más importantes de la visión por computador. Esto es debido a que el mundo real está en continuo movimiento y es obvio que podremos obtener mucha más información de escenas en movimiento que de escenas estáticas. En esta tesis se ha trabajado principalmente en desarrollar algoritmos de estimación de movimiento para su aplicación a problemas de registrado de imágenes y a problemas de segmentación del movimiento. Uno de los principales objetivos de este trabajo es desarrollar una técnica de registrado de imágenes de gran exactitud, tolerante a outliers y que sea capaz de realizar su labor incluso en la presencia de deformaciones de gran magnitud tales como traslaciones, rotaciones, cambios de escala, cambios de iluminación globales y no espacialmente uniformes, etc. Otro de los objetivos de esta tesis es trabajar en problemas de estimación y la segmentación del movimiento en secuencias de dos imágenes de forma casi simultánea y sin conocimiento a priori del número de modelos de movimiento presentes. Los experimentos mostrados en este trabajo demuestran que los algoritmos propuestos en esta tesis obtienen resultados de gran exactitud.This thesis proposes several techniques related with the motion estimation problem. In particular, it deals with global motion estimation for image registration and motion segmentation. In the first case, we will suppose that the majority of the pixels of the image follow the same motion model, although the possibility of a large number of outliers are also considered. In the motion segmentation problem, the presence of more than one motion model will be considered. In both cases, sequences of two consecutive grey level images will be used. A new generalized least squares-based motion estimator will be proposed. The proposed formulation of the motion estimation problem provides an additional constraint that helps to match the pixels using image gradient information. That is achieved thanks to the use of a weight for each observation, providing high weight values to the observations considered as inliers, and low values to the ones considered as outliers. To avoid falling in a local minimum, the proposed motion estimator uses a Feature-based method (SIFT-based) to obtain good initial motion parameters. Therefore, it can deal with large motions like translation, rotations, scales changes, viewpoint changes, etc. The accuracy of our approach has been tested using challenging real images using both affine and projective motion models. Two Motion Estimator techniques, which use M-Estimators to deal with outliers into a iteratively reweighted least squared-based strategy, have been selected to compare the accuracy of our approach. The results obtained have showed that the proposed motion estimator can obtain as accurate results as M-Estimator-based techniques and even better in most cases. The problem of estimating accurately the motion under non-uniform illumination changes will also be considered. A modification of the proposed global motion estimator will be proposed to deal with this kind of illumination changes. In particular, a dynamic image model where the illumination factors are functions of the localization will be used replacing the brightens constancy assumption allowing for a more general and accurate image model. Experiments using challenging images will be performed showing that the combination of both techniques is feasible and provides accurate estimates of the motion parameters even in the presence of strong illumination changes between the images. The last part of the thesis deals with the motion estimation and segmentation problem. The proposed algorithm uses temporal information, by using the proposed generalized least-squares motion estimation process and spatial information by using an iterative region growing algorithm which classifies regions of pixels into the different motion models present in the sequence. In addition, it can extract the different moving regions of the scene while estimating its motion quasi-simultaneously and without a priori information of the number of moving objects in the scene. The performance of the algorithm will be tested on synthetic and real images with multiple objects undergoing different types of motion
    • …
    corecore