1,036 research outputs found

    MPR+SP: Towards a Unified MPR-based MANET Extension for OSPF

    Get PDF
    International audienceHeterogeneous networks and wireless components - fixed routers as well as mobile routers - emerge as wireless mesh networks are being deployed. Such heterogeneity is bound to become more and more present in the near future as mobile ad hoc networking becomes a reality. While it is possible to cope with heterogeneity by employing different routing protocols for the fixed / wired part and for the wireless / ad hoc part of the network, this may lead to sub-optimal performance, e.g. by way of longer routing paths due to these routing protocols sharing prefixes and "connecting" the network only at distinct gateways between the two routing domains. Thus, the establishment of a single unified routing domain, and the use of a single routing protocol, for such heterogeneous networks is desired. OSPF is a natural candidate for this task, due to its wide deployment, its modularity and its similarity with the popular ad hoc routing protocol OLSR. Multiple OSPF extensions for MANETs have therefore been specified by the IETF. This paper introduces a novel OSPF extension for operation on ad hoc networks, MPR+SP, and compares it with the existing OSPF extensions via simulations, which show that MPR+SP outperforms prior art

    Smart Grid Relay Protection and Network Resource Management for Real-Time Communications.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    MPR+SP: Towards a Unified MPR-based MANET Extension of OSPF

    Get PDF
    Heterogeneous networks combining both wired and wireless components -- fixed routers as well as mobile routers -- emerge as wireless mesh networks are being deployed. Such heterogeneity is bound to become more and more present in the near future as mobile ad hoc networking becomes a reality. While it is possible to cope with heterogeneity by employing different routing protocols for the fixed / wired part and for the wireless / ad hoc part of the network, this may lead to sub-optimal performance, \eg by way of longer routing paths due to these routing protocols sharing prefixes and "connecting" the network only at distinct gateways between the two routing domains. Thus, the establishment of a single unified routing domain, and the use of a single routing protocol, for such heterogeneous networks is desired. OSPF is a natural candidate for this task, due to its wide deployment, its modularity and its similarity with the popular ad hoc routing protocol OLSR. Multiple OSPF extensions for MANETs have therefore been specified by the IETF. This memorandum introduces a novel OSPF extension for operation on ad hoc networks, MPRSP, and compares it with the existing OSPF extensions via simulations, which show that MPR+SP outperforms prior art.Les réseaux hétérogènes combinant des parties filaires et des parties sans-fils -- des routeurs mobiles ainsi que des routeurs fixes -- sont déployés de nos jours sous forme de réseaux mesh. Dans le futur, les réseaux hétérogènes sont amenés à devenir de plus en plus présents, au fur et à mesure que les réseaux ad hoc deviendront réalité. Il est possible de gérer l'hétérogénéité de tels réseaux en utilisant plusieurs protocoles de routages à la fois, un pour la partie fixe / filaire, et un autre pour la partie mobile / sans-fil. Cependant, l'utilisation simultanée de plusieurs protocoles dans ce contexte mène souvent à des performances sous-optimales (par exemple en forçant les routes à passer par certaines passerelles). C'est pourquoi il est préférable d'utiliser un protocole de routage unifié, couvrant un réseau hétérogène dans sa globalité. OSPF est le candidat naturel pour accomplir cette tâche, dû à son usage répandu, à la modularité de son design et à sa ressemblance avec le protocole de routage ad hoc OLSR. Plusieurs extensions d'OSPF pour MANET ont donc été récemment normalisées par l'IETF. Ce rapport présente une nouvelle extension d'OSPF pour les réseaux ad hoc, nommée MPR+SP, et la compare aux extensions existantes au moyen de simulations, qui montrent que MPR+SP offre une meilleure performance que l'état de l'art

    Making Networks Robust to Component Failures

    Get PDF
    In this thesis, we consider instances of component failure in the Internet and in networked cyber-physical systems, such as the communication network used by the modern electric power grid (termed the smart grid). We design algorithms that make these networks more robust to various component failures, including failed routers, failures of links connecting routers, and failed sensors. This thesis divides into three parts: recovery from malicious or misconfigured nodes injecting false information into a distributed system (e.g., the Internet), placing smart grid sensors to provide measurement error detection, and fast recovery from link failures in a smart grid communication network. First, we consider the problem of malicious or misconfigured nodes that inject and spread incorrect state throughout a distributed system. Such false state can degrade the performance of a distributed system or render it unusable. For example, in the case of network routing algorithms, false state corresponding to a node incorrectly declaring a cost of 0 to all destinations (maliciously or due to misconfiguration) can quickly spread through the network. This causes other nodes to (incorrectly) route via the misconfigured node, resulting in suboptimal routing and network congestion. We propose three algorithms for efficient recovery in such scenarios and evaluate their efficacy. The last two parts of this thesis consider robustness in the context of the electric power grid. We study the use and placement of a sensor, called a Phasor Measurement Unit (PMU), currently being deployed in electric power grids worldwide. PMUs provide voltage and current measurements at a sampling rate orders of magnitude higher than the status quo. As a result, PMUs can both drastically improve existing power grid operations and enable an entirely new set of applications, such as the reliable integration of renewable energy resources. However, PMU applications require correct (addressed in thesis part 2) and timely(covered in thesis part 3) PMU data. Without these guarantees, smart grid operators and applications may make incorrect decisions and take corresponding (incorrect) actions. The second part of this thesis addresses PMU measurement errors, which have been observed in practice. We formulate a set of PMU placement problems that aim to satisfy two constraints: place PMUs near each other to allow for measurement error detection and use the minimal number of PMUs to infer the state of the maximum number of system buses and transmission lines. For each PMU placement problem, we prove it is NP-Complete, propose a simple greedy approximation algorithm, and evaluate our greedy solutions. In the last part of this thesis, we design algorithms for fast recovery from link failures in a smart grid communication network. We propose, design, and evaluate solutions to all three aspects of link failure recovery: (a) link failure detection, (b) algorithms for pre-computing backup multicast trees, and (c) fast backup tree installation. To address (a), we design link-failure detection and reporting mechanisms that use OpenFlow to detect link failures when and where they occur inside the network. OpenFlow is an open source framework that cleanly separates the control and data planes for use in network management and control. For part (b), we formulate a new problem, Multicast Recycling, that pre-computes backup multicast trees that aim to minimize control plane signaling overhead. We prove Multicast Recycling is at least NP-hard and present a corresponding approximation algorithm. Lastly, two control plane algorithms are proposed that signal data plane switches to install pre-computed backup trees. An optimized version of each installation algorithm is designed that finds a near minimum set of forwarding rules by sharing forwarding rules across multicast groups. This optimization reduces backup tree install time and associated control state. We implement these algorithms using the POX open-source OpenFlow controller and evaluate them using the Mininet emulator, quantifying control plane signaling and installation time

    Efficient Actor Recovery Paradigm For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor networks (WSNs) are becoming widely used worldwide. Wireless Sensor and Actor Networks (WSANs) represent a special category of WSNs wherein actors and sensors collaborate to perform specific tasks. WSANs have become one of the most preeminent emerging type of WSNs. Sensors with nodes having limited power resources are responsible for sensing and transmitting events to actor nodes. Actors are high-performance nodes equipped with rich resources that have the ability to collect, process, transmit data and perform various actions. WSANs have a unique architecture that distinguishes them from WSNs. Due to the characteristics of WSANs, numerous challenges arise. Determining the importance of factors usually depends on the application requirements. The actor nodes are the spine of WSANs that collaborate to perform the specific tasks in an unsubstantiated and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power fatigue of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. It is essential to keep inter-actor connectivity in order to insure network connectivity. Thus, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). For network recovery process from actor node failure, optimal re-localization and coordination techniques should take place. In this work, we propose an efficient actor recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balances the network performance. The packet is handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets (Either from actor or sensor). This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, we compare the performance of our proposed work with state-of the art localization algorithms. Our experimental results show superior performance in regards to network life, residual energy, reliability, sensor/ actor recovery time and data recovery

    Fast reroute using segment routing for smart grids

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitectura, Sistemas e Redes de Computadores) Universidade de Lisboa, Faculdade de Ciências, 2016A rede eléctrica tem contribuído de forma extraordinária para o nosso dia-a-dia nas últimas décadas e, como tal, tornou-se essencial para a nossa sociedade. Hoje em dia, estão a ser tomadas decisões para a modernizar, de modo a que seja possível fornecer novos serviços. Graças ao aumento da produção¸ ão de electricidade através de energias renováveis (energia solar, hídrica e eólica), e ao aumento do consumo de energia, é vista como necessária uma reestruturação da rede eléctrica. Para atingir estes objectivos, foi proposta uma nova geração destas redes, as Smart Grids (SG). As SG são compostas por dispositivos electrónicos inteligentes, sensores com e sem fios e contadores inteligentes que necessitam de se coordenar para funcionarem correctamente. Como tal, é fundamental ter uma rede de comunicação moderna capaz de suportar estes desafios [1]. Um conjunto de propriedades de que se destacam a escalabilidade, disponibilidade e segurança, são fulcrais para o funcionamento das SG. Para as SG a infra-estrutura de comunicação tem um papel particularmente importante para que se possam cumprir estas necessidades. As tecnologias actuais baseadas em Internet Protocol (IP) e em Multiprotocol Layer Switching (MPLS) tˆem conseguido corresponder a estas necessidades. O protocolo IP é um dos alicerces para a comunicação mundial, enquanto que o MPLS tem sido adoptado pelas suas capacidades de engenharia de tráfego. No entanto, as redes de IP tradicionais são difíceis de gerir e tornam complicado o desenho de soluções que permitam utilização eficiente de recursos e que possibilitem comunicação resiliente. Por outro lado, o MPLS tem problemas de escalabilidade devido ao uso de protocolos complexos como o Resource Reservation Protocol with Traffic Engineering (RSVP-TE). As Software Defined Networks (SDN) promete resolver alguns dos problemas mencionados anteriormente, a partir do desacoplamento do plano de dados do plano de controlo, que passa a ser gerido por um controlador logicamente centralizado [2][3][4]. Deste modo, as aplicações que são executadas no controlador têm uma visão centralizada do estado da rede, o que facilita a procura de soluções de gestão de redes. No entanto, os operadores de SG poderão apresentar alguma relutância ao mover todos os seus elementos da rede para uma SDN. Felizmente, foi proposto recentemente um novo protocolo pela Internet Engineering Task Force (IETF) – Segment Routing (SR) [5] – que permite a centralização lógica oferecida por uma SDN num ambiente de uma rede MPLS. SR ´e muito semelhante ao MPLS, na medida em que utiliza segmentos que se comportam como etiquetas MPLS. A comutação de pacotes, baseada também nestas etiquetas, é gerida por comutadores que usam as mesmas acções do MPLS (push, pop e swap). No entanto, ao contrário do MPLS, o SR não necessita de protocolos complexos como o RSVP-TE, simplificando a gestão da rede. O SR utiliza uma forma de source routing, facilitadora da sua integração. Desta forma o SR pode ser integrado com os controladores SDN e outras aplicações. Para implementar SR, o controlador SDN apenas precisa de enviar uma lista ordenada de segmentos para o encaminhador que a insere no cabeçalho dos pacotes quando necessitarem de serem enviados. Isto torna possível a criação de uma solução mais simples e escalável para engenharia de tráfego. Nesta tese vamos explorar o uso de SR para avaliar a resiliencia da rede. O objectivo passa por desenhar e avaliar as soluções que forneçam reencaminhamento rápido após uma falha de uma ligação entre nós. Em particular, fornece a capacidade de realizar reencaminhamento rápido enquanto fornece uma grande percentagem de cobertura. Aproveitando as características das SDN e de SR, as nossas soluções permitem que o controlador pré compute os caminhos de backup necessários para instalar nos encaminhadores, mantendo o plano de dados em MPLS inalterado. A contribuição principal desta tese pode ser resumida em dois pontos: 1. Desenho de uma solução de reencaminhamento rápido em caso de faltas para Smart Grids, usando SR e SDN. 2. Fornecer uma avaliação exaustiva do algoritmo de modo a que se consiga compreender os seus benefícios e limitações. O algoritmo proposto utiliza vários comutadores que são utilizados como destinos intermédios, que garantem a entrega dos pacotes após a falha de uma ligação entre nós. Como tal, também propomos dois selectores de segmentos que fornecem reencaminhamento rápido mas com características diferentes. A primeira solução, Fast Segment Drop (FSD), selecciona um segmento próximo da origem do caminho em vez do segmento mais próximo do destino. Isto permite que os pacotes que atravessam a rede causem o menor overhead possível. O overhead devese ao número de segmentos usados em cada nó durante o caminho. Assim sendo, se escolhermos um segmento mais próximo do destino o overhead será maior. A segunda solução, Congestion Avoidance Segment (CAS), escolhe segmentos que podem aumentar o overhead mas que, em contraste, fornecem a capacidade de escolher o caminho com menor utilização. Deste modo pode-se evitar estrangulamentos existentes na rede. Para compararmos as nossas soluções implementamos um selector aleatório e o algoritmo TI-LFA [6]. Os resultados demonstram que para a maioria das topologias uma falha entre nós pode ser tolerada utilizando Loop Free Alternatives (LFA). No entanto ainda existem cerca de 20% dos casos que necessitam de utilizar um segmento para tolerar uma falha, enquanto que dois segmentos raramente são necessários. Também foi possível concluir que o nosso algoritmo fornece mais flexibilidade na escolha de segmentos do que TI-LFA visto que permite uma maior escolha de segmentos. Utilizando CAS é possível reduzir ligeiramente a congestão das ligações na rede em grids e em topologias reais.With the increase of power generation from renewable sources and with a growing energy demand, the traditional communication network underpinning the actual electric power grid needs an overhaul. As a response, the Smart Grid is a new generation of electric grids that aims to fulfill this goal. Smart Grids demand a set of properties that range from high availability to scalability and security. Therefore, the communication infrastructure plays an important role. Current Internet Protocol-based and Multiprotocol Layer Switching (MPLS) technologies have been suggested capable in achieving those needs. However, IP networks have problems to offer traffic engineering solutions and MPLS faces scalability problems due to the use of complex protocols such as RSVP-TE. A new network paradigm, Software-Defined Networks (SDN), is revolutionizing the way computer networks are built and operated, and is leading to the “softwarization” of networking. Showing promise to solve some of the above problems. However, smart grid operators may be reluctant to move all their network elements to SDN anytime soon. Fortunately, Segment routing, recently proposed by the IETF, allows SDN to be used in the context of MPLS networks. The data plane of Segment Routing is similar to MPLS as it uses segments that behave as MPLS labels and is managed in switches using similar actions. In this thesis we present algorithms for fast reroute in SR networks. We propose two solutions: Fast Segment Drop (FSD) that aims to minimize packet overhead and segment list size; and Congestion Avoidance Segment (CAS), a solution that provides traffic engineering by minimizing the maximum link load. The results indeed show that by using CAS reduces network congestion when compared with other algorithms. FSD provides higher coverage using just one segment thus reducing overhead

    Synoptic analysis techniques for intrusion detection in wireless networks

    Get PDF
    Current system administrators are missing intrusion alerts hidden by large numbers of false positives. Rather than accumulation more data to identify true alerts, we propose an intrusion detection tool that e?ectively uses select data to provide a picture of ?network health?. Our hypothesis is that by utilizing the data available at both the node and cooperative network levels we can create a synoptic picture of the network providing indications of many intrusions or other network issues. Our major contribution is to provide a revolutionary way to analyze node and network data for patterns, dependence, and e?ects that indicate network issues. We collect node and network data, combine and manipulate it, and tease out information about the state of the network. We present a method based on utilizing the number of packets sent, number of packets received, node reliability, route reliability, and entropy to develop a synoptic picture of the network health in the presence of a sinkhole and a HELLO Flood attacker. This method conserves network throughput and node energy by requiring no additional control messages to be sent between the nodes unless an attacker is suspected. We intend to show that, although the concept of an intrusion detection system is not revolutionary, the method in which we analyze the data for clues about network intrusion and performance is highly innovative

    Modeling and Implementation of Wireless Sensor Networks for Logistics Applications

    Get PDF
    Logistics has experienced a long time of developments and improvements based on the advanced vehicle technologies, transportation systems, traffic network extension and logistics processes. In the last decades, the complexity has increased significantly and this has created complex logistics networks over multiple continents. Because of the close cooperation, these logistics networks are highly dependent on each other in sharing and processing the logistics information. Every customer has many suppliers and vice versa. The conventional centralized control continues but reaches some limitations such as the different distribution of suppliers, the complexity and flexibility of processing orders or the dynamics of the logistic objects. In order to overcome these disadvantages, the paradigm of autonomous logistics is proposed and promises a better technical solution for current logistics systems. In autonomous logistics, the decision making is shifted toward the logistic objects which are defined as material items (e.g., vehicles, containers) or immaterial items (e.g., customer orders) of a networked logistics system. These objects have the ability to interact with each other and make decisions according to their own objectives. In the technical aspect, with the rapid development of innovative sensor technology, namely Wireless Sensor Networks (WSNs), each element in the network can self-organize and interact with other elements for information transmission. The attachment of an electronic sensor element into a logistic object will create an autonomous environment in both the communication and the logistic domain. With this idea, the requirements of logistics can be fulfilled; for example, the monitoring data can be precise, comprehensive and timely. In addition, the goods flow management can be transferred to the information logistic object management, which is easier by the help of information technologies. However, in order to transmit information between these logistic objects, one requirement is that a routing protocol is necessary. The Opportunistic relative Distance-Enabled Uni-cast Routing (ODEUR ) protocol which is proposed and investigated in this thesis shows that it can be used in autonomous environments like autonomous logistics. Moreover, the support of mobility, multiple sinks and auto-connection in this protocol enhances the dynamics of logistic objects. With a general model which covers a range from low-level issues to high-level protocols, many services such as real time monitoring of environmental conditions, context-aware applications and localization make the logistic objects (embedded with sensor equipment) more advanced in information communication and data processing. The distributed management service in each sensor node allows the flexible configuration of logistic items at any time during the transportation. All of these integrated features introduce a new technical solution for smart logistic items and intelligent transportation systems. In parallel, a management system, WSN data Collection and Management System (WiSeCoMaSys), is designed to interact with the deployed Wireless Sensor Networks. This tool allows the user to easily manipulate the sensor networks remotely. With its rich set of features such as real time data monitoring, data analysis and visualization, per-node management, and alerts, this tool helps both developers and users in the design and deployment of a sensor network. In addition, an analytical model is developed for comparison with the results from simulations and experiments. Focusing on the use of probability theory to model the network links, this model considers several important factors such as packet reception rate and network traffic which are used in the simulation and experiment parts. Moreover, the comparison between simulation, experiment and analytical results is also carried out to estimate the accuracy of the design and make several improvements of the simulation accuracy. Finally, all of the above parts are integrated in one unique system. This system is verified by both simulations in logistic scenarios (e.g., harbors, warehouses and containers) and experiments. The results show that the proposed model and protocol have a good packet delivery rate, little memory requirements and low delay. Accordingly, this system design is practical and applicable in logistics
    corecore