3 research outputs found

    Demo: iJam with Channel Randomization

    Full text link
    Physical-layer key generation methods utilize the variations of the communication channel to achieve a secure key agreement between two parties with no prior security association. Their secrecy rate (bit generation rate) depends heavily on the randomness of the channel, which may reduce significantly in a stable environment. Existing methods seek to improve the secrecy rate by injecting artificial noise into the channel. Unfortunately, noise injection cannot alter the underlying channel state, which depends on the multipath environment between the transmitter and receiver. Consequently, these methods are known to leak key bits toward multi-antenna eavesdroppers, which is capable of filtering the noise through the differential of multiple signal receptions. This work demonstrates an improved approach to reinforce physical-layer key generation schemes, e.g., channel randomization. The channel randomization approach leverages a reconfigurable antenna to rapidly change the channel state during transmission, and an angle-of-departure (AoD) based channel estimation algorithm to cancel the changing effects for the intended receiver. The combined result is a communication channel stable in the eyes of the intended receiver but randomly changing from the viewpoint of the eavesdropper. We augmented an existing physical-layer key generation protocol, iJam, with the proposed approach and developed a full-fledged remote instrumentation platform to demonstrate its performance. Our evaluations show that augmentation does not affect the bit error rate (BER) of the intended receiver during key establishment but reduces the eavesdropper's BER to the level of random guessing, regardless of the number of antennas it equips

    Semidefinite Relaxation of Quadratic Optimization Problems

    Full text link

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    corecore