2,638 research outputs found

    Bipedal Hopping: Reduced-order Model Embedding via Optimization-based Control

    Get PDF
    This paper presents the design and validation of controlling hopping on the 3D bipedal robot Cassie. A spring-mass model is identified from the kinematics and compliance of the robot. The spring stiffness and damping are encapsulated by the leg length, thus actuating the leg length can create and control hopping behaviors. Trajectory optimization via direct collocation is performed on the spring-mass model to plan jumping and landing motions. The leg length trajectories are utilized as desired outputs to synthesize a control Lyapunov function based quadratic program (CLF-QP). Centroidal angular momentum, taking as an addition output in the CLF-QP, is also stabilized in the jumping phase to prevent whole body rotation in the underactuated flight phase. The solution to the CLF-QP is a nonlinear feedback control law that achieves dynamic jumping behaviors on bipedal robots with compliance. The framework presented in this paper is verified experimentally on the bipedal robot Cassie.Comment: 8 pages, 7 figures, accepted by IROS 201

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning

    Full text link
    Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.eduComment: To appear at the International Conference On Intelligent Robots and Systems (IROS) 2018. Project webpage: http://vpg.cs.princeton.edu Summary video: https://youtu.be/-OkyX7Zlhi
    • …
    corecore