49 research outputs found

    Spectral and spatial methods for the classification of urban remote sensing data

    Get PDF
    Lors de ces travaux, nous nous sommes intéressés au problème de la classification supervisée d'images satellitaires de zones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS). Deux stratégies ont été proposées. La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM) non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale et l'information spectrale extraites lors de la première phase. La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification, divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schéma de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé. Les différents résultats sont fusionnés à l'aide d'opérateurs flous. Les méthodes ont été validées sur des images réelles. Des améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    A survey of multiple classifier systems as hybrid systems

    Get PDF
    A current focus of intense research in pattern classification is the combination of several classifier systems, which can be built following either the same or different models and/or datasets building approaches. These systems perform information fusion of classification decisions at different levels overcoming limitations of traditional approaches based on single classifiers. This paper presents an up-to-date survey on multiple classifier system (MCS) from the point of view of Hybrid Intelligent Systems. The article discusses major issues, such as diversity and decision fusion methods, providing a vision of the spectrum of applications that are currently being developed

    Quantifying the spatio-temporal dynamics of woody plant encroachment using an integrative remote sensing, GIS, and spatial modeling approach.

    Get PDF
    Despite a longstanding universal concern about and intensive research into woody plant encroachment (WPE)---the replacement of grasslands by shrub- and woodlands---our accumulated understanding of the process has either not been translated into sustainable rangeland management strategies or with only limited success. In order to increase our scientific insights into WPE, move us one step closer toward the sustainable management of rangelands affected by or vulnerable to the process, and identify needs for a future global research agenda, this dissertation presents an unprecedented critical, qualitative and quantitative assessment of the existing literature on the topic and evaluates the utility of an integrative remote sensing, GIS, and spatial modeling approach for quantifying the spatio-temporal dynamics of WPE.In sum, this dissertation demonstrates that integrative remote sensing, GIS, and spatial modeling approaches have enormous potential for addressing questions relevant to both rangelands research and management. However, it also suggests that much work remains to be done before we can translate our understanding of WPE into sustainable rangeland management strategies. In particular, we need to more fully explore the limitations and potentials of currently available data and techniques for quantifying WPE; build structures for data sharing and integration; develop a set of relevant standards; more actively engage in collaborative research efforts; and foster cross-cutting dialogues among researchers, managers, and communities.Specifically, this research demonstrates that the application of cutting-edge remote sensing techniques (Multiple Endmember Spectral Mixture Analysis, fuzzy logic-based change detection) to conventional medium spatial and spectral resolution imagery (Landsat Thematic Mapper, Landsat Enhanced Thematic Mapper Plus, ASTER) can be used to generate spatially explicit estimates of temporal changes in the abundance of woody plants and other surface materials. The research also shows that spatial models (Geographically Weighted Regression, Weights of Evidence, Weighted Logistic Regression) integrating this timely remotely sensed information with readily available GIS data can yield reasonably accurate estimates of an area's relative vulnerability to WPE and of the importance of anthropogenic and geoecological variables influencing the process. Such models may also be used for the testing of existing and generation of new scientific hypotheses about WPE, for evaluating the impact of natural or human-induced modifications of a landscape on the landscape's vulnerability to WPE, and for identifying target areas for conservation, restoration, or other management objectives.Findings from this research suggest that gaps in our current understanding of WPE and difficulties in devising sustainable rangeland management strategies are in part due to the complex spatio-temporal web of interactions between geoecological and anthropogenic variables involved in the process as well as limitations of presently available data and techniques. However, an in-depth analysis of the published literature also reveals that aforementioned problems are caused by two further crucial factors: the absence of information acquisition and reporting standards and the relative lack of long-term, large-scale, multi-disciplinary research efforts. The methodological framework proposed in this dissertation yields data that are easily standardized according to various criteria and facilitates the integration of spatially explicit data generated by a variety of studies. This framework may thus provide one common ground for scientists from a diversity of fields. Also, it has utility for both research and management

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Semantic location extraction from crowdsourced data

    Get PDF
    Crowdsourced Data (CSD) has recently received increased attention in many application areas including disaster management. Convenience of production and use, data currency and abundancy are some of the key reasons for attracting this high interest. Conversely, quality issues like incompleteness, credibility and relevancy prevent the direct use of such data in important applications like disaster management. Moreover, location information availability of CSD is problematic as it remains very low in many crowd sourced platforms such as Twitter. Also, this recorded location is mostly related to the mobile device or user location and often does not represent the event location. In CSD, event location is discussed descriptively in the comments in addition to the recorded location (which is generated by means of mobile device's GPS or mobile communication network). This study attempts to semantically extract the CSD location information with the help of an ontological Gazetteer and other available resources. 2011 Queensland flood tweets and Ushahidi Crowd Map data were semantically analysed to extract the location information with the support of Queensland Gazetteer which is converted to an ontological gazetteer and a global gazetteer. Some preliminary results show that the use of ontologies and semantics can improve the accuracy of place name identification of CSD and the process of location information extraction

    Landslide susceptibility mapping using remote sensing data and geographic information system-based algorithms

    Get PDF
    Whether they occur due to natural triggers or human activities, landslides lead to loss of life and damages to properties which impact infrastructures, road networks and buildings. Landslide Susceptibility Map (LSM) provides the policy and decision makers with some valuable information. This study aims to detect landslide locations by using Sentinel-1 data, the only freely available online Radar imagery, and to map areas prone to landslide using a novel algorithm of AB-ADTree in Cameron Highlands, Pahang, Malaysia. A total of 152 landslide locations were detected by using integration of Interferometry Synthetic Aperture RADAR (InSAR) technique, Google Earth (GE) images and extensive field survey. However, 80% of the data were employed for training the machine learning algorithms and the remaining 20% for validation purposes. Seventeen triggering and conditioning factors, namely slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, Normalized Difference Vegetation Index (NDVI), rainfall, land cover, lithology, soil types, curvature, profile curvature, Stream Power Index (SPI) and Topographic Wetness Index (TWI), were extracted from satellite imageries, digital elevation model (DEM), geological and soil maps. These factors were utilized to generate landslide susceptibility maps using Logistic Regression (LR) model, Logistic Model Tree (LMT), Random Forest (RF), Alternating Decision Tree (ADTree), Adaptive Boosting (AdaBoost) and a novel hybrid model from ADTree and AdaBoost models, namely AB-ADTree model. The validation was based on area under the ROC curve (AUC) and statistical measurements of Positive Predictive Value (PPV), Negative Predictive Value (NPV), sensitivity, specificity, accuracy and Root Mean Square Error (RMSE). The results showed that AUC was 90%, 92%, 88%, 59%, 96% and 94% for LR, LMT, RF, ADTree, AdaBoost and AB-ADTree algorithms, respectively. Non-parametric evaluations of the Friedman and Wilcoxon were also applied to assess the models’ performance: the findings revealed that ADTree is inferior to the other models used in this study. Using a handheld Global Positioning System (GPS), field study and validation were performed for almost 20% (30 locations) of the detected landslide locations and the results revealed that the landslide locations were correctly detected. In conclusion, this study can be applicable for hazard mitigation purposes and regional planning
    corecore