12,613 research outputs found

    Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning

    Full text link
    Most work in quantum circuit optimization has been performed in isolation from the results of quantum fault-tolerance. Here we present a polynomial-time algorithm for optimizing quantum circuits that takes the actual implementation of fault-tolerant logical gates into consideration. Our algorithm re-synthesizes quantum circuits composed of Clifford group and T gates, the latter being typically the most costly gate in fault-tolerant models, e.g., those based on the Steane or surface codes, with the purpose of minimizing both T-count and T-depth. A major feature of the algorithm is the ability to re-synthesize circuits with additional ancillae to reduce T-depth at effectively no cost. The tested benchmarks show up to 65.7% reduction in T-count and up to 87.6% reduction in T-depth without ancillae, or 99.7% reduction in T-depth using ancillae.Comment: Version 2 contains substantial improvements and extensions to the previous version. We describe a new, more robust algorithm and achieve significantly improved experimental result

    Approximate quantum error correction can lead to better codes

    Get PDF
    We present relaxed criteria for quantum error correction which are useful when the specific dominant noise process is known. These criteria have no classical analogue. As an example, we provide a four-bit code which corrects for a single amplitude damping error. This code violates the usual Hamming bound calculated for a Pauli description of the error process, and does not fit into the GF(4) classification.Comment: 7 pages, 2 figures, submitted to Phys. Rev.

    Optimal Linear and Cyclic Locally Repairable Codes over Small Fields

    Full text link
    We consider locally repairable codes over small fields and propose constructions of optimal cyclic and linear codes in terms of the dimension for a given distance and length. Four new constructions of optimal linear codes over small fields with locality properties are developed. The first two approaches give binary cyclic codes with locality two. While the first construction has availability one, the second binary code is characterized by multiple available repair sets based on a binary Simplex code. The third approach extends the first one to q-ary cyclic codes including (binary) extension fields, where the locality property is determined by the properties of a shortened first-order Reed-Muller code. Non-cyclic optimal binary linear codes with locality greater than two are obtained by the fourth construction.Comment: IEEE Information Theory Workshop (ITW) 2015, Apr 2015, Jerusalem, Israe
    corecore