1,157 research outputs found

    Shape Parameter Estimation

    Get PDF
    Performance of machine learning approaches depends strongly on the choice of misfit penalty, and correct choice of penalty parameters, such as the threshold of the Huber function. These parameters are typically chosen using expert knowledge, cross-validation, or black-box optimization, which are time consuming for large-scale applications. We present a principled, data-driven approach to simultaneously learn the model pa- rameters and the misfit penalty parameters. We discuss theoretical properties of these joint inference problems, and develop algorithms for their solution. We show synthetic examples of automatic parameter tuning for piecewise linear-quadratic (PLQ) penalties, and use the approach to develop a self-tuning robust PCA formulation for background separation.Comment: 20 pages, 10 figure

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted â„“2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view
    • …
    corecore