11,023 research outputs found

    Reconstruction of Graphs

    Get PDF
    A graph is reconstructible if it is determined up to isomorphism from the collection of all its one-vertex deleted unlabeled subgraphs. One of the foremost unsolved problems in Graph Theory is the Reconstruction Conjecture, which asserts that every graph G on at least three vertices is reconstructible. In 1980’s, tremendous work was done and many significant results have been produced on the problem and its variations. During the last three decades, work on it has slowed down gradually. P. J. Kelly (1957) first noted that trees are reconstructible; but the proof is quite lengthy. A short proof, due to Greenwell and Hemminger (1973), was given which is based on a simple, but powerful, counting theorem. This chapter deals with the counting theorem and its subsequent applications; also it ends up with a reduction of the Reconstruction Conjecture using distance and connectedness, which may lead to the final solution of the conjecture

    Some Ulam's reconstruction problems for quantum states

    Full text link
    Provided a complete set of putative kk-body reductions of a multipartite quantum state, can one determine if a joint state exists? We derive necessary conditions for this to be true. In contrast to what is known as the quantum marginal problem, we consider a setting where the labeling of the subsystems is unknown. The problem can be seen in analogy to Ulam's reconstruction conjecture in graph theory. The conjecture - still unsolved - claims that every graph on at least three vertices can uniquely be reconstructed from the set of its vertex-deleted subgraphs. When considering quantum states, we demonstrate that the non-existence of joint states can, in some cases, already be inferred from a set of marginals having the size of just more than half of the parties. We apply these methods to graph states, where many constraints can be evaluated by knowing the number of stabilizer elements of certain weights that appear in the reductions. This perspective links with constraints that were derived in the context of quantum error-correcting codes and polynomial invariants. Some of these constraints can be interpreted as monogamy-like relations that limit the correlations arising from quantum states. Lastly, we provide an answer to Ulam's reconstruction problem for generic quantum states.Comment: 22 pages, 3 figures, v2: significantly revised final versio

    Community detection and stochastic block models: recent developments

    Full text link
    The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences. This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds. The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed

    Spectral Thresholds in the Bipartite Stochastic Block Model

    Get PDF
    We consider a bipartite stochastic block model on vertex sets V1V_1 and V2V_2, with planted partitions in each, and ask at what densities efficient algorithms can recover the partition of the smaller vertex set. When ∣V2βˆ£β‰«βˆ£V1∣|V_2| \gg |V_1|, multiple thresholds emerge. We first locate a sharp threshold for detection of the partition, in the sense of the results of \cite{mossel2012stochastic,mossel2013proof} and \cite{massoulie2014community} for the stochastic block model. We then show that at a higher edge density, the singular vectors of the rectangular biadjacency matrix exhibit a localization / delocalization phase transition, giving recovery above the threshold and no recovery below. Nevertheless, we propose a simple spectral algorithm, Diagonal Deletion SVD, which recovers the partition at a nearly optimal edge density. The bipartite stochastic block model studied here was used by \cite{feldman2014algorithm} to give a unified algorithm for recovering planted partitions and assignments in random hypergraphs and random kk-SAT formulae respectively. Our results give the best known bounds for the clause density at which solutions can be found efficiently in these models as well as showing a barrier to further improvement via this reduction to the bipartite block model.Comment: updated version, will appear in COLT 201
    • …
    corecore