176,176 research outputs found

    A Reduced Three Dimensional Dynamic Structural Model for Structural Health Assessment

    Get PDF
    Abstract Dynamic models of elastic structures are derived using approximations of linear three dimensional elasticity. A model for the three dimensional motion of a nonsymmetric structure that is of use for applications to health monitoring for buildings is obtained. The symmetric version of the model is validated using laboratory acceleration data. Narrow plate equations whose derivation is based on similar consideration but with plate thinness assumptions are used in a probabilistic inversion for elastic and mass properties from acceleration data. Finally, predictions of structural behavior based on the information from the inversion problem are made

    Vibration-based methods for structural and machinery fault diagnosis based on nonlinear dynamics tools

    Get PDF
    This study explains and demonstrates the utilisation of different nonlinear-dynamics-based procedures for the purposes of structural health monitoring as well as for monitoring of robot joints

    Ambient vibration re-testing and operational modal analysis of the Humber Bridge

    Get PDF
    An ambient vibration survey of the Humber Bridge was carried out in July 2008 by a combined team from the UK, Portugal and Hong Kong. The exercise had several purposes that included the evaluation of the current technology for instrumentation and system identification and the generation of an experimental dataset of modal properties to be used for validation and updating of finite element models for scenario simulation and structural health monitoring. The exercise was conducted as part of a project aimed at developing online diagnosis capabilities for three landmark European suspension bridges. Ten stand-alone tri-axial acceleration recorders were deployed at locations along all three spans and in all four pylons during five days of consecutive one-hour recordings. Time series segments from the recorders were merged, and several operational modal analysis techniques were used to analyse these data and assemble modal models representing the global behaviour of the bridge in all three dimensions for all components of the structure. The paper describes the equipment and procedures used for the exercise, compares the operational modal analysis (OMA) technology used for system identification and presents modal parameters for key vibration modes of the complete structure. The results obtained using three techniques, natural excitation technique/eigensystem realisation algorithm, stochastic subspace identification and poly-Least Squares Frequency Domain method, are compared among themselves and with those obtained from a 1985 test of the bridge, showing few significant modal parameter changes over 23 years in cases where direct comparison is possible. The measurement system and the much more sophisticated OMA technology used in the present test show clear advantages necessary due to the compressed timescales compared to the earlier exercise. Even so, the parameter estimates exhibit significant variability between different methods and variations of the same method, while also varying in time and having inherent variability. (C) 2010 Elsevier Ltd. All rights reserved

    Structural health monitoring and bridge condition assessment

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2016This research is mainly in the field of structural identification and model calibration, optimal sensor placement, and structural health monitoring application for large-scale structures. The ultimate goal of this study is to identify the structure behavior and evaluate the health condition by using structural health monitoring system. To achieve this goal, this research firstly established two fiber optic structural health monitoring systems for a two-span truss bridge and a five-span steel girder bridge. Secondly, this research examined the empirical mode decomposition (EMD) methodā€™s application by using the portable accelerometer system for a long steel girder bridge, and identified the accelerometer number requirements for comprehensively record bridge modal frequencies and damping. Thirdly, it developed a multi-direction model updating method which can update the bridge model by using static and dynamic measurement. Finally, this research studied the optimal static strain sensor placement and established a new method for model parameter identification and damage detection.Chapter 1: Introduction -- Chapter 2: Structural Health Monitoring of the Klehini River Bridge -- Chapter 3: Ambient Loading and Modal Parameters for the Chulitna River Bridge -- Chapter 4: Multi-direction Bridge Model Updating using Static and Dynamic Measurement -- Chapter 5: Optimal Static Strain Sensor Placement for Bridge Model Parameter Identification by using Numerical Optimization Method -- Chapter 6: Conclusions and Future Work

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    A review of progressive collapse research and regulations

    No full text
    History has demonstrated that buildings designed to conventional design codes can lack the robustness necessary to withstand localised damage, partial or even complete collapse. This variable performance has led governmental organisations to seek ways of ensuring all buildings of significant size possess a minimum level of robustness. The research community has responded by advancing understanding of how structures behave when subjected to localised damage. Regulations and design recommendations have been developed to help ensure more consistent resilience in all framed buildings of significant size, and rigorous design approaches have been specified for buildings deemed potentially vulnerable to extreme loading events. This paper summarises some of the more important progressive collapse events, to identify key attributes that lead to vulnerability to collapse. Current procedures and guidelines for ensuring a minimum level of performance are reviewed and modelling methods for structures subjected to localised damage are described. These include increasingly sophisticated progressive collapse analysis procedures, including linear static and non-linear static analysis, as well as non-linear static pushover and linear dynamic methods. Finally, fully non-linear dynamic methods are considered. Building connections potentially represent the most vulnerable structural elements in steel-framed buildings; their failure can lead to progressive collapses. Steel connections also present difficulties with respect to frame modelling and this paper highlights benefits and drawbacks of some modelling procedures with respect to their treatment of connections
    • ā€¦
    corecore