3,111 research outputs found

    Universality and programmability of quantum computers

    Get PDF
    Manin, Feynman, and Deutsch have viewed quantum computing as a kind of universal physical simulation procedure. Much of the writing about quantum logic circuits and quantum Turing machines has shown how these machines can simulate an arbitrary unitary transformation on a finite number of qubits. The problem of universality has been addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani as well as Kitaev and Solovay. The quantum logic circuit model, developed by Feynman and Deutsch, has been more prominent in the research literature than Deutsch's quantum Turing machines. Quantum Turing machines form a class closely related to deterministic and probabilistic Turing machines and one might hope to find a universal machine in this class. A universal machine is the basis of a notion of programmability. The extent to which universality has in fact been established by the pioneers in the field is examined and this key notion in theoretical computer science is scrutinised in quantum computing by distinguishing various connotations and concomitant results and problems.Comment: 17 pages, expands on arXiv:0705.3077v1 [quant-ph

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Quantum Simulation of Dissipative Processes without Reservoir Engineering

    Get PDF
    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify itss accuracy.Comment: 7 pages + Supplemental Material (6 pages

    Effective Physical Processes and Active Information in Quantum Computing

    Get PDF
    The recent debate on hypercomputation has arisen new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics. We propose here the idea of "effective physical process" as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information source in accordance with Bell's constraints. On condition that we give up the formal concept of "universality", the possibility to realize quantum oracles is reachable. In this way computation is led back to the logic of physical world.Comment: 10 pages; Added references for sections 2 and

    Characterization of quantum computable decision problems by state discrimination

    Full text link
    One advantage of quantum algorithms over classical computation is the possibility to spread out, process, analyse and extract information in multipartite configurations in coherent superpositions of classical states. This will be discussed in terms of quantum state identification problems based on a proper partitioning of mutually orthogonal sets of states. The question arises whether or not it is possible to encode equibalanced decision problems into quantum systems, so that a single invocation of a filter used for state discrimination suffices to obtain the result.Comment: 9 page
    corecore