533 research outputs found

    Technical Report: A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints

    Full text link
    This technical report is an extended version of the paper 'A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper considers the problem of finding the most informative path for a sensing robot under temporal logic constraints, a richer set of constraints than have previously been considered in information gathering. An algorithm for informative path planning is presented that leverages tools from information theory and formal control synthesis, and is proven to give a path that satisfies the given temporal logic constraints. The algorithm uses a receding horizon approach in order to provide a reactive, on-line solution while mitigating computational complexity. Statistics compiled from multiple simulation studies indicate that this algorithm performs better than a baseline exhaustive search approach.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Control with Probabilistic Signal Temporal Logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions.Comment: 7 pages, submitted to the 2016 American Control Conference (ACC 2016) on September, 30, 2015 (under review

    Control with probabilistic signal temporal logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions

    Formal methods paradigms for estimation and machine learning in dynamical systems

    Get PDF
    Formal methods are widely used in engineering to determine whether a system exhibits a certain property (verification) or to design controllers that are guaranteed to drive the system to achieve a certain property (synthesis). Most existing techniques require a large amount of accurate information about the system in order to be successful. The methods presented in this work can operate with significantly less prior information. In the domain of formal synthesis for robotics, the assumptions of perfect sensing and perfect knowledge of system dynamics are unrealistic. To address this issue, we present control algorithms that use active estimation and reinforcement learning to mitigate the effects of uncertainty. In the domain of cyber-physical system analysis, we relax the assumption that the system model is known and identify system properties automatically from execution data. First, we address the problem of planning the path of a robot under temporal logic constraints (e.g. "avoid obstacles and periodically visit a recharging station") while simultaneously minimizing the uncertainty about the state of an unknown feature of the environment (e.g. locations of fires after a natural disaster). We present synthesis algorithms and evaluate them via simulation and experiments with aerial robots. Second, we develop a new specification language for tasks that require gathering information about and interacting with a partially observable environment, e.g. "Maintain localization error below a certain level while also avoiding obstacles.'' Third, we consider learning temporal logic properties of a dynamical system from a finite set of system outputs. For example, given maritime surveillance data we wish to find the specification that corresponds only to those vessels that are deemed law-abiding. Algorithms for performing off-line supervised and unsupervised learning and on-line supervised learning are presented. Finally, we consider the case in which we want to steer a system with unknown dynamics to satisfy a given temporal logic specification. We present a novel reinforcement learning paradigm to solve this problem. Our procedure gives "partial credit'' for executions that almost satisfy the specification, which can lead to faster convergence rates and produce better solutions when the specification is not satisfiable

    Multi-agent persistent surveillance under temporal logic constraints

    Full text link
    This thesis proposes algorithms for the deployment of multiple autonomous agents for persistent surveillance missions requiring repeated, periodic visits to regions of interest. Such problems arise in a variety of domains, such as monitoring ocean conditions like temperature and algae content, performing crowd security during public events, tracking wildlife in remote or dangerous areas, or watching traffic patterns and road conditions. Using robots for surveillance is an attractive solution to scenarios in which fixed sensors are not sufficient to maintain situational awareness. Multi-agent solutions are particularly promising, because they allow for improved spatial and temporal resolution of sensor information. In this work, we consider persistent monitoring by teams of agents that are tasked with satisfying missions specified using temporal logic formulas. Such formulas allow rich, complex tasks to be specified, such as "visit regions A and B infinitely often, and if region C is visited then go to region D, and always avoid obstacles." The agents must determine how to satisfy such missions according to fuel, communication, and other constraints. Such problems are inherently difficult due to the typically infinite horizon, state space explosion from planning for multiple agents, communication constraints, and other issues. Therefore, computing an optimal solution to these problems is often infeasible. Instead, a balance must be struck between computational complexity and optimality. This thesis describes solution methods for two main classes of multi-agent persistent surveillance problems. First, it considers the class of problems in which persistent surveillance goals are captured entirely by TL constraints. Such problems require agents to repeatedly visit a set of surveillance regions in order to satisfy their mission. We present results for agents solving such missions with charging constraints, with noisy observations, and in the presence of adversaries. The second class of problems include an additional optimality criterion, such as minimizing uncertainty about the location of a target or maximizing sensor information among the team of agents. We present solution methods and results for such missions with a variety of optimality criteria based on information metrics. For both classes of problems, the proposed algorithms are implemented and evaluated via simulation, experiments with robots in a motion capture environment, or both

    Formal Methods for Autonomous Systems

    Full text link
    Formal methods refer to rigorous, mathematical approaches to system development and have played a key role in establishing the correctness of safety-critical systems. The main building blocks of formal methods are models and specifications, which are analogous to behaviors and requirements in system design and give us the means to verify and synthesize system behaviors with formal guarantees. This monograph provides a survey of the current state of the art on applications of formal methods in the autonomous systems domain. We consider correct-by-construction synthesis under various formulations, including closed systems, reactive, and probabilistic settings. Beyond synthesizing systems in known environments, we address the concept of uncertainty and bound the behavior of systems that employ learning using formal methods. Further, we examine the synthesis of systems with monitoring, a mitigation technique for ensuring that once a system deviates from expected behavior, it knows a way of returning to normalcy. We also show how to overcome some limitations of formal methods themselves with learning. We conclude with future directions for formal methods in reinforcement learning, uncertainty, privacy, explainability of formal methods, and regulation and certification

    Model Predictive Control with and without Terminal Weight: Stability and Algorithms

    Full text link
    This paper presents stability analysis tools for model predictive control (MPC) with and without terminal weight. Stability analysis of MPC with a limited horizon but without terminal weight is a long-standing open problem. By using a modified value function as an Lyapunov function candidate and the principle of optimality, this paper establishes stability conditions for this type of widely spread MPC algorithms. A new stability guaranteed MPC algorithm without terminal weight (MPCS) is presented. With the help of designing a new sublevel set defined by the value function of one-step ahead stage cost, conditions for checking its recursive feasibility and stability of the proposed MPC algorithm are presented. The new stability condition and the derived MPCS overcome the difficulties arising in the existing terminal weight based MPC framework, including the need of searching a suitable terminal weight and possible poor performance caused by an inappropriate terminal weight. This work is further extended to MPC with a terminal weight for the completeness. Numerical examples are presented to demonstrate the effectiveness of the proposed tool, whereas the existing stability analysis tools are either not applicable or lead to quite conservative results. It shows that the proposed tools offer a number of mechanisms to achieve stability: adjusting state and/or control weights, extending the length of horizon, and adding a simple extra constraint on the first or second state in the optimisation

    Provably-Correct Task Planning for Autonomous Outdoor Robots

    Get PDF
    Autonomous outdoor robots should be able to accomplish complex tasks safely and reliably while considering constraints that arise from both the environment and the physical platform. Such tasks extend basic navigation capabilities to specify a sequence of events over time. For example, an autonomous aerial vehicle can be given a surveillance task with contingency plans while complying with rules in regulated airspace, or an autonomous ground robot may need to guarantee a given probability of success while searching for the quickest way to complete the mission. A promising approach for the automatic synthesis of trusted controllers for complex tasks is to employ techniques from formal methods. In formal methods, tasks are formally specified symbolically with temporal logic. The robot then synthesises a controller automatically to execute trusted behaviour that guarantees the satisfaction of specified tasks and regulations. However, a difficulty arises from the lack of expressivity, which means the constraints affecting outdoor robots cannot be specified naturally with temporal logic. The goal of this thesis is to extend the capabilities of formal methods to express the constraints that arise from outdoor applications and synthesise provably-correct controllers with trusted behaviours over time. This thesis focuses on two important types of constraints, resource and safety constraints, and presents three novel algorithms that express tasks with these constraints and synthesise controllers that satisfy the specification. Firstly, this thesis proposes an extension to probabilistic computation tree logic (PCTL) called resource threshold PCTL (RT-PCTL) that naturally defines the mission specification with continuous resource threshold constraints; furthermore, it synthesises an optimal control policy with respect to the probability of success. With RT-PCTL, a state with accumulated resource out of the specified bound is considered to be failed or saturated depending on the specification. The requirements on resource bounds are naturally encoded in the symbolic specification, followed by the automatic synthesis of an optimal controller with respect to the probability of success. Secondly, the thesis proposes an online algorithm called greedy Buchi algorithm (GBA) that reduces the synthesis problem size to avoid the scalability problem. A framework is then presented with realistic control dynamics and physical assumptions in the environment such as wind estimation and fuel constraints. The time and space complexity for the framework is polynomial in the size of the system state, which is efficient for online synthesis. Lastly, the thesis proposes a synthesis algorithm for an optimal controller with respect to completion time given the minimum safety constraints. The algorithm naturally balances between completion time and safety. This work proves an analytical relationship between the probability of success and the conditional completion time given the mission specification. The theoretical contributions in this thesis are validated through realistic simulation examples. This thesis identifies and solves two core problems that contribute to the overall vision of developing a theoretical basis for trusted behaviour in outdoor robots. These contributions serve as a foundation for further research in multi-constrained task planning where a number of different constraints are considered simultaneously within a single framework
    • …
    corecore