4 research outputs found

    FANET Drone’s 4K Data Applications, Mobility Models and Wi-Fi IEEE802.11n Standards, Journal of Telecommunications and Information Technology, 2021, nr 1

    Get PDF
    With growing popularity of unmanned aerial vehicles (UAVs), the importance of flying ad-hoc networks (FANETs) is enhanced by such applications as 4K video recording, communications in search and rescue missions and goods deliveries, to name just a few. This, in turn, stimulates research on different topologies of networks existing between UAVs, with studies in this field being essential to improving performance of such networks. Several problems must be solved to effectively use UAVs in order to offer stable and reliable massive data transmission capabilities, taking into consideration quickly changing FANET topologies, types of routing, security issues, etc. In this paper, a comprehensive evaluation of FANETs used by UAVs is presented in terms of communication network challenges, data types, mobility models and standards applied in order to achieve best performance. The evaluation presented herein covers such areas as data throughput, retransmission attempts and delay

    Review of Ad Hoc Networks scenarios and challenges in years 2015-2019

    Get PDF
    A Mobile Ad-hoc Network (MANET) protocol performance analysis depends on the type of simulation tools, mobility models, and metrics used. These parameters\u27 choice is crucial to researchers because it may produce an inaccurate result if it is not well chosen. The challenges researcher is facing are on the choice of these four parameters. Our survey shows an inclination to used Ad-hoc On-Demand Distance Vector routing (AODV) for performance comparison and enhancement of it by the researcher. Network simulation 2 (NS2) was the most selected tool, but we observe a decline in its utilization in recent years. Random Waypoint Mobility model (RWPM) was the most used mobility model. We have found a high percentage of the published article did not mention the mobility models use; this will make the result difficult for performance comparison with other works. Packet Delivery Ratio (PDR), End to End Delay (E2ED) were the most used metrics. Some authors have self-developed their simulation tools; the authors have also used new metrics and protocols to get a particular result based on their research objective. However, some criteria of choosing a protocol, metrics, mobility model, and simulation tool were not described, decreasing the credibility of their papers\u27 results. Improvement needs to be done in the Ad-hoc network in terms of benchmark, acceptable scenario parameters. This survey will give the best practice to be used and some recommendations to the Ad-hoc network community

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues
    corecore