6 research outputs found

    Constraint-based type inference for FreezeML

    Get PDF

    A quick look at impredicativity

    Get PDF
    Type inference for parametric polymorphism is wildly successful, but has always suffered from an embarrassing flaw: polymorphic types are themselves not first class. We present Quick Look, a practical, implemented, and deployable design for impredicative type inference. To demonstrate our claims, we have modified GHC, a production-quality Haskell compiler, to support impredicativity. The changes required are modest, localised, and are fully compatible with GHC's myriad other type system extensions

    A quick look at impredicativity

    Get PDF
    Type inference for parametric polymorphism is wildly successful, but has always suffered from an embarrassing flaw: polymorphic types are themselves not first class. We present Quick Look, a practical, implemented, and deployable design for impredicative type inference. To demonstrate our claims, we have modified GHC, a production-quality Haskell compiler, to support impredicativity. The changes required are modest, localised, and are fully compatible with GHC's myriad other type system extensions

    A quick look at impredicativity

    No full text
    Type inference for parametric polymorphism is wildly successful, but has always suffered from an embarrassing flaw: polymorphic types are themselves not first class. We present Quick Look, a practical, implemented, and deployable design for impredicative type inference. To demonstrate our claims, we have modified GHC, a production-quality Haskell compiler, to support impredicativity. The changes required are modest, localised, and are fully compatible with GHC's myriad other type system extensions

    A quick look at impredicativity

    No full text
    corecore