43 research outputs found

    Adaptive monotone multigrid methods for nonlinear variational problems

    Get PDF
    A wide range of problems occurring in engineering and industry is characterized by the presence of a free (i.e. a priori unknown) boundary where the underlying physical situation is changing in a discontinuous way. Mathematically, such phenomena can be often reformulated as variational inequalities or related non–smooth minimization problems. In these research notes, we will describe a new and promising way of constructing fast solvers for the corresponding discretized problems providing globally convergent iterative schemes with (asymptotic) multigrid convergence speed. The presentation covers physical modelling, existence and uniqueness results, finite element approximation and adaptive mesh–refinement based on a posteriori error estimation. The numerical properties of the resulting adaptive multilevel algorithm are illustrated by typical applications, such as semiconductor device simulation or continuous casting

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    Fast computations with the harmonic Poincaré-Steklov operators on nested refined meshes

    Get PDF
    In this paper we develop asymptotically optimal algorithms for fast computations with the discrete harmonic Poincar'e-Steklov operators in presence of nested mesh refinement. For both interior and exterior problems the matrix-vector multiplication for the finite element approximations to the Poincar'e-Steklov operators is shown to have a complexity of the order O(Nreflog3N) where Nref is the number of degrees of freedom on the polygonal boundary under consideration and N = 2-p0 · Nref, p0 ≥ 1, is the dimension of a finest quasi-uniform level. The corresponding memory needs are estimated by O(Nreflog2N). The approach is based on the multilevel interface solver (as in the case of quasi-uniform meshes, see [20]) applied to the Schur complement reduction onto the nested refined interface associated with nonmatching decomposition of a polygon by rectangular substructures
    corecore