4,309 research outputs found
Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph
As the security landscape evolves over time, where thousands of species of
malicious codes are seen every day, antivirus vendors strive to detect and
classify malware families for efficient and effective responses against malware
campaigns. To enrich this effort, and by capitalizing on ideas from the social
network analysis domain, we build a tool that can help classify malware
families using features driven from the graph structure of their system calls.
To achieve that, we first construct a system call graph that consists of system
calls found in the execution of the individual malware families. To explore
distinguishing features of various malware species, we study social network
properties as applied to the call graph, including the degree distribution,
degree centrality, average distance, clustering coefficient, network density,
and component ratio. We utilize features driven from those properties to build
a classifier for malware families. Our experimental results show that
influence-based graph metrics such as the degree centrality are effective for
classifying malware, whereas the general structural metrics of malware are less
effective for classifying malware. Our experiments demonstrate that the
proposed system performs well in detecting and classifying malware families
within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201
Tiresias: Predicting Security Events Through Deep Learning
With the increased complexity of modern computer attacks, there is a need for
defenders not only to detect malicious activity as it happens, but also to
predict the specific steps that will be taken by an adversary when performing
an attack. However this is still an open research problem, and previous
research in predicting malicious events only looked at binary outcomes (e.g.,
whether an attack would happen or not), but not at the specific steps that an
attacker would undertake. To fill this gap we present Tiresias, a system that
leverages Recurrent Neural Networks (RNNs) to predict future events on a
machine, based on previous observations. We test Tiresias on a dataset of 3.4
billion security events collected from a commercial intrusion prevention
system, and show that our approach is effective in predicting the next event
that will occur on a machine with a precision of up to 0.93. We also show that
the models learned by Tiresias are reasonably stable over time, and provide a
mechanism that can identify sudden drops in precision and trigger a retraining
of the system. Finally, we show that the long-term memory typical of RNNs is
key in performing event prediction, rendering simpler methods not up to the
task
Survey of Machine Learning Techniques for Malware Analysis
Coping with malware is getting more and more challenging, given their
relentless growth in complexity and volume. One of the most common approaches
in literature is using machine learning techniques, to automatically learn
models and patterns behind such complexity, and to develop technologies for
keeping pace with the speed of development of novel malware. This survey aims
at providing an overview on the way machine learning has been used so far in
the context of malware analysis. We systematize surveyed papers according to
their objectives (i.e., the expected output, what the analysis aims to), what
information about malware they specifically use (i.e., the features), and what
machine learning techniques they employ (i.e., what algorithm is used to
process the input and produce the output). We also outline a number of problems
concerning the datasets used in considered works, and finally introduce the
novel concept of malware analysis economics, regarding the study of existing
tradeoffs among key metrics, such as analysis accuracy and economical costs
Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection
In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology
and framework for efficient and effective real-time malware detection,
leveraging the best of conventional machine learning (ML) and deep learning
(DL) algorithms. In PROPEDEUTICA, all software processes in the system start
execution subjected to a conventional ML detector for fast classification. If a
piece of software receives a borderline classification, it is subjected to
further analysis via more performance expensive and more accurate DL methods,
via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays
to the execution of software subjected to deep learning analysis as a way to
"buy time" for DL analysis and to rate-limit the impact of possible malware in
the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and
877 commonly used benign software samples from various categories for the
Windows OS. Our results show that the false positive rate for conventional ML
methods can reach 20%, and for modern DL methods it is usually below 6%.
However, the classification time for DL can be 100X longer than conventional ML
methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional
ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the
percentage of software subjected to DL analysis was approximately 40% on
average. Further, the application of delays in software subjected to ML reduced
the detection time by approximately 10%. Finally, we found and discussed a
discrepancy between the detection accuracy offline (analysis after all traces
are collected) and on-the-fly (analysis in tandem with trace collection). Our
insights show that conventional ML and modern DL-based malware detectors in
isolation cannot meet the needs of efficient and effective malware detection:
high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure
Unsupervised Anomaly-based Malware Detection using Hardware Features
Recent works have shown promise in using microarchitectural execution
patterns to detect malware programs. These detectors belong to a class of
detectors known as signature-based detectors as they catch malware by comparing
a program's execution pattern (signature) to execution patterns of known
malware programs. In this work, we propose a new class of detectors -
anomaly-based hardware malware detectors - that do not require signatures for
malware detection, and thus can catch a wider range of malware including
potentially novel ones. We use unsupervised machine learning to build profiles
of normal program execution based on data from performance counters, and use
these profiles to detect significant deviations in program behavior that occur
as a result of malware exploitation. We show that real-world exploitation of
popular programs such as IE and Adobe PDF Reader on a Windows/x86 platform can
be detected with nearly perfect certainty. We also examine the limits and
challenges in implementing this approach in face of a sophisticated adversary
attempting to evade anomaly-based detection. The proposed detector is
complementary to previously proposed signature-based detectors and can be used
together to improve security.Comment: 1 page, Latex; added description for feature selection in Section 4,
results unchange
- …