20 research outputs found

    A new SVD approach to optimal topic estimation

    Full text link
    In the probabilistic topic models, the quantity of interest---a low-rank matrix consisting of topic vectors---is hidden in the text corpus matrix, masked by noise, and Singular Value Decomposition (SVD) is a potentially useful tool for learning such a matrix. However, different rows and columns of the matrix are usually in very different scales and the connection between this matrix and the singular vectors of the text corpus matrix are usually complicated and hard to spell out, so how to use SVD for learning topic models faces challenges. We overcome the challenges by introducing a proper Pre-SVD normalization of the text corpus matrix and a proper column-wise scaling for the matrix of interest, and by revealing a surprising Post-SVD low-dimensional {\it simplex} structure. The simplex structure, together with the Pre-SVD normalization and column-wise scaling, allows us to conveniently reconstruct the matrix of interest, and motivates a new SVD-based approach to learning topic models. We show that under the popular probabilistic topic model \citep{hofmann1999}, our method has a faster rate of convergence than existing methods in a wide variety of cases. In particular, for cases where documents are long or nn is much larger than pp, our method achieves the optimal rate. At the heart of the proofs is a tight element-wise bound on singular vectors of a multinomially distributed data matrix, which do not exist in literature and we have to derive by ourself. We have applied our method to two data sets, Associated Process (AP) and Statistics Literature Abstract (SLA), with encouraging results. In particular, there is a clear simplex structure associated with the SVD of the data matrices, which largely validates our discovery.Comment: 73 pages, 8 figures, 6 tables; considered two different VH algorithm, OVH and GVH, and provided theoretical analysis for each algorithm; re-organized upper bound theory part; added the subsection of comparing error rate with other existing methods; provided another improved version of error analysis through Bernstein inequality for martingale

    On some provably correct cases of variational inference for topic models

    Full text link
    Variational inference is a very efficient and popular heuristic used in various forms in the context of latent variable models. It's closely related to Expectation Maximization (EM), and is applied when exact EM is computationally infeasible. Despite being immensely popular, current theoretical understanding of the effectiveness of variaitonal inference based algorithms is very limited. In this work we provide the first analysis of instances where variational inference algorithms converge to the global optimum, in the setting of topic models. More specifically, we show that variational inference provably learns the optimal parameters of a topic model under natural assumptions on the topic-word matrix and the topic priors. The properties that the topic word matrix must satisfy in our setting are related to the topic expansion assumption introduced in (Anandkumar et al., 2013), as well as the anchor words assumption in (Arora et al., 2012c). The assumptions on the topic priors are related to the well known Dirichlet prior, introduced to the area of topic modeling by (Blei et al., 2003). It is well known that initialization plays a crucial role in how well variational based algorithms perform in practice. The initializations that we use are fairly natural. One of them is similar to what is currently used in LDA-c, the most popular implementation of variational inference for topic models. The other one is an overlapping clustering algorithm, inspired by a work by (Arora et al., 2014) on dictionary learning, which is very simple and efficient. While our primary goal is to provide insights into when variational inference might work in practice, the multiplicative, rather than the additive nature of the variational inference updates forces us to use fairly non-standard proof arguments, which we believe will be of general interest.Comment: 46 pages, Compared to previous version: clarified notation, a number of typos fixed throughout pape
    corecore