20,425 research outputs found

    Beyond the Shannon-Khinchin Formulation: The Composability Axiom and the Universal Group Entropy

    Get PDF
    The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann-Gibbs (BG) entropy and are widely applicable in thermodynamics, quantum mechanics and information theory. In [23], by extending previous ideas of Shannon [38], [39], Khinchin proposed an axiomatic definition of the BG entropy, based on four requirements, nowadays known as the Shannon-Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behind the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent subsystems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal class of admissible entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with the universal formal group, the new family of entropies introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.Comment: Extended version; 25 page

    New Perturbation Theory for Nonstationary Anharmonic Oscillator

    Full text link
    The new perturbation theory for the problem of nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zero order approximation the exact wave function of harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wave function the variational-iterational method is proposed, that make it possible to correct both the amplitude and the phase of wave function. As an application the first order correction are proposed both for wave function and S-matrix elements for asymmetric perturbation potential of type V(x,τ)=α(τ)x3+β(τ)x4.V(x,\tau)=\alpha (\tau)x^3+\beta (\tau)x^4. The transition amplitude ''ground state - ground state'' W00(λ;ρ)W_{00}(\lambda ;\rho) is analyzed in detail depending on perturbation parameter λ\lambda (including strong coupling region % \lambda 1\sim 1) and one-dimensional refraction coefficient ρ\rho .Comment: LaTeX, 13 page

    Direct measurement of optical quasidistribution functions: multimode theory and homodyne tests of Bell's inequalities

    Full text link
    We develop a multimode theory of direct homodyne measurements of quantum optical quasidistribution functions. We demonstrate that unbalanced homodyning with appropriately shaped auxiliary coherent fields allows one to sample point-by-point different phase space representations of the electromagnetic field. Our analysis includes practical factors that are likely to affect the outcome of a realistic experiment, such as non-unit detection efficiency, imperfect mode matching, and dark counts. We apply the developed theory to discuss feasibility of observing a loophole-free violation of Bell's inequalities by measuring joint two-mode quasidistribution functions under locality conditions by photon counting. We determine the range of parameters of the experimental setup that enable violation of Bell's inequalities for two states exhibiting entanglement in the Fock basis: a one-photon Fock state divided by a 50:50 beam splitter, and a two-mode squeezed vacuum state produced in the process of non-degenerate parametric down-conversion.Comment: 18 pages, 7 figure

    Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

    Full text link
    Bose-Einstein condensates subject to short pulses (`kicks') from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.Comment: 8 page
    corecore