16,604 research outputs found

    A distributed networked approach for fault detection of large-scale systems

    Get PDF
    Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique

    Distributed Adaptive Fault-Tolerant Control of Uncertain Multi-Agent Systems

    Get PDF
    This paper presents an adaptive fault-tolerant control (FTC) scheme for a class of nonlinear uncertain multi-agent systems. A local FTC scheme is designed for each agent using local measurements and suitable information exchanged between neighboring agents. Each local FTC scheme consists of a fault diagnosis module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault-tolerant controllers activated after fault detection and after fault isolation, respectively. Under certain assumptions, the closed-loop system's stability and leader-follower consensus properties are rigorously established under different modes of the FTC system, including the time-period before possible fault detection, between fault detection and possible isolation, and after fault isolation

    Krein Space-Based H

    Get PDF
    This paper investigates the finite-time H∞ fault estimation problem for linear time-delay systems, where the delay appears in both state and measurement equations. Firstly, the design of finite horizon H∞ fault estimation is converted into a minimum problem of certain quadratic form. Then we introduce a stochastic system in Krein space, and a sufficient and necessary condition for the minimum is derived by applying innovation analysis approach and projection theory. Finally, a solution to the H∞ fault estimation is obtained by recursively computing a partial difference Riccati equation, which has the same dimension as the original system. Compared with the conventional augmented approach, the solving of a high dimension Riccati equation is avoided

    A CUSUM test with sliding reference for ground resonance monitoring

    Get PDF
    Ground resonance is potentially destructive oscillations that may develop on helicopters rotors when the aircraft is on or near the ground. Therefore, this unstable phenomenon has to be detected before it occurs in order to be avoided by the pilot. To predict the zones of instability, works have generally relayed on off-line modal analysis of the helicopter model. Unfortunately, this off-line analysis is not sufficiently reliable. The subspace-based cumulative sum CUSUM test, able of on-line monitoring, is a good alternative which permits - at once- to avoid the system identification for each flight point and to have more robust detection, with reduced costs. In this paper, we describe an alternative test- with a moving reference this time- in order to kill wrong alarms or premature responses that are observed for fixed-reference tests. Numerical results reported herein are driven from simulation data

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore