23,280 research outputs found

    Monte Carlo sensor networks

    Get PDF
    technical reportBiswas et al. [1] introduced a probabilistic approach to inference with limited information in sensor networks. They represented the sensor network as a Bayesian network and performed approximate inference using Markov Chain Monte Carlo (MCMC). The goal is to robustly answer queries even under noisy or partial information scenarios. We propose an alternative method based on simple Monte Carlo estimation; our method allows a distributed algorithm, pre-computation of probabilities, a more refined spatial analysis, as well as desiderata for sensor placement in the friendly agent surrounded by enemies problem. In addition, we performed experiments with real microphones and robots to determine the sensor correct response probability

    Probabilistic Methodology and Techniques for Artefact Conception and Development

    Get PDF
    The purpose of this paper is to make a state of the art on probabilistic methodology and techniques for artefact conception and development. It is the 8th deliverable of the BIBA (Bayesian Inspired Brain and Artefacts) project. We first present the incompletness problem as the central difficulty that both living creatures and artefacts have to face: how can they perceive, infer, decide and act efficiently with incomplete and uncertain knowledge?. We then introduce a generic probabilistic formalism called Bayesian Programming. This formalism is then used to review the main probabilistic methodology and techniques. This review is organized in 3 parts: first the probabilistic models from Bayesian networks to Kalman filters and from sensor fusion to CAD systems, second the inference techniques and finally the learning and model acquisition and comparison methodologies. We conclude with the perspectives of the BIBA project as they rise from this state of the art

    Graphical model-based approaches to target tracking in sensor networks: an overview of some recent work and challenges

    Get PDF
    Sensor Networks have provided a technology base for distributed target tracking applications among others. Conventional centralized approaches to the problem lack scalability in such a scenario where a large number of sensors provide measurements simultaneously under a possibly non-collaborating environment. Therefore research efforts have focused on scalable, robust, and distributed algorithms for the inference tasks related to target tracking, i.e. localization, data association, and track maintenance. Graphical models provide a rigorous tool for development of such algorithms by modeling the information structure of a given task and providing distributed solutions through message passing algorithms. However, the limited communication capabilities and energy resources of sensor networks pose the additional difculty of considering the tradeoff between the communication cost and the accuracy of the result. Also the network structure and the information structure are different aspects of the problem and a mapping between the physical entities and the information structure is needed. In this paper we discuss available formalisms based on graphical models for target tracking in sensor networks with a focus on the aforementioned issues. We point out additional constraints that must be asserted in order to achieve further insight and more effective solutions
    corecore