4 research outputs found

    Automated aortic Doppler flow tracing for reproducible research and clinical measurements

    Get PDF
    In clinical practice, echocardiographers are often unkeen to make the significant time investment to make additional multiple measurements of Doppler velocity. Main hurdle to obtaining multiple measurements is the time required to manually trace a series of Doppler traces. To make it easier to analyze more beats, we present the description of an application system for automated aortic Doppler envelope quantification, compatible with a range of hardware platforms. It analyses long Doppler strips, spanning many heartbeats, and does not require electrocardiogram to separate individual beats. We tested its measurement of velocity-time-integral and peak-velocity against the reference standard defined as the average of three experts who each made three separate measurements. The automated measurements of velocity-time-integral showed strong correspondence (R2 = 0.94) and good Bland-Altman agreement (SD = 1.39 cm) with the reference consensus expert values, and indeed performed as well as the individual experts ( R2 = 0.90 to 0.96, SD = 1.05 to 1.53 cm). The same performance was observed for peak-velocities; ( R2 = 0.98, SD = 3.07 cm/s) and ( R2 = 0.93 to 0.98, SD = 2.96 to 5.18 cm/s). This automated technology allows > 10 times as many beats to be analyzed compared to the conventional manual approach. This would make clinical and research protocols more precise for the same operator effort

    A probabilistic, hierarchical, and discriminant framework for rapid and accurate detection of deformable anatomic structure

    No full text
    We propose a probabilistic, hierarchical, and discriminant (PHD) framework for fast and accurate detection of deformable anatomic structures from medical images. The PHD framework has three characteristics. First, it integrates distinctive primitives of the anatomic structures at global, segmental, and landmark levels in a probabilistic manner. Second, since the configuration of the anatomic structures lies in a high-dimensional parameter space, it seeks the best configuration via a hierarchical evaluation of the detection probability that quickly prunes the search space. Finally, to separate the primitive from the background, it adopts a discriminative boosting learning implementation. We apply the PHD framework for accurately detecting various deformable anatomic structures from M- mode and Doppler echocardiograms in about a second.S. Kevin Zhou, F. Guo, J.H. Park, G. Carneiro, J. Jackson, M. Brendel, C. Simopoulos, J. Otsuki, and D. Comanici

    A probabilistic, hierarchical, and discriminant framework for rapid and accurate detection of deformable anatomic structure ∗

    No full text
    We propose a probabilistic, hierarchical, and discriminant (PHD) framework for fast and accurate detection of deformable anatomic structures from medical images. The PHD framework has three characteristics. First, it integrates distinctive primitives of the anatomic structures at global, segmental, and landmark levels in a probabilistic manner. Second, since the configuration of the anatomic structures lies in a high-dimensional parameter space, it seeks the best configuration via a hierarchical evaluation of the detection probability that quickly prunes the search space. Finally, to separate the primitive from the background, it adopts a discriminative boosting learning implementation. We apply the PHD framework for accurately detecting various deformable anatomic structures from Mmode and Doppler echocardiograms in about a second. 1
    corecore