609 research outputs found

    Voltage and Reactive Power Control in Islanded Microgrids

    Get PDF
    Previous studies put on view lots of advantages and concerns for islanded microgrids (IMGs), whether it is initiated for emergency, intentionally planned or permanent island system purposes. From the concerns that have not been addressed yet, such as: 1) The ability of the distributed generation (DG) units to maintain equal reactive power sharing in a distribution system; 2) The ability of the DG units to maintain acceptable voltage boundary in the entire IMG; 3) The functionality of the existing voltage and reactive power (Volt/Var) DG, this thesis analyzes the complexity of voltage regulations in droop-controlled IMGs. A new multi-agent algorithm is proposed to satisfy the reactive power sharing and the voltage regulation requirements of IMGs. Also, the operation conflicts between DG units and Volt/Var controllers, such as shunt capacitors (SCs) and load-ratio control transformer (LRT) during the IMG mode of operation, are investigated in this thesis. Further, a new local control scheme for SCs and LRTs has been proposed to mitigate their operational challenges in IMGs

    Progresses in analytical design of distribution grids and energy storage

    Get PDF
    none4noIn the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.openColangelo G.; Spirto G.; Milanese M.; de Risi A.Colangelo, G.; Spirto, G.; Milanese, M.; de Risi, A

    Impact of Photovoltaic Power Plant on the Transient Stability Compared With Synchronous Generator

    Get PDF
    Abstract: In the recent years the power system is changing and distributed generation (DG) units are used in power systems at the distribution level regularly. The power demand is increasing and it can be fulfilled by use of renewable energy sources like solar energy. This paper discusses the using of Photovoltaic power plant as a DG in distrusted network and its effect on transient stability. In order to scrutinizing the effect of PV system as a DG in redial distribution system, 3 IEEE standard test systems are simulated with Dig SILENT software. In all 3 networks a short circuit fault is taken and the effect of that is analyzed in 2 modes; first with synchronous generators (SG) and second with Photovoltaic (PV) power plant and the results are compared. Comparing the results shows that in all 3 networks PV power plant work could save the stability in active power and voltage without using any extra devices

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Characteristics features, economical aspects and environmental impacts of gen-4 nuclear power for developing countries

    Get PDF
    The growing demand of energy has delicate the requirement of alternative sources of energies other than fossil fuels. Though renewable energy resources like solar, biomass, hydro and geothermal energy appear as environment friendly, replenishing sources of energy, a comprehensive solution appears far-fetched as far as large scale production and wide-spread dissemination is concerned when long term cost factors are taken into consideration. In this paper, discussions on the advanced fourth generation nuclear power on the basis of environmental contamination, energy security, cost of fossil fuels and electricity generation and have philosophy to the prospects of nuclear power as the ultimate future energy option for the developing countries are done. This study proposes that gen-4 nuclear appears to be a long term environment favorable panacea to the much discoursed problem of energy crisis by maintaining energy security and long term cost concern in developing countries as well as in the whole world. Keywords: Gen-4 nuclear, reactor, kinetics, neutron, delayed neutron, transient

    Voltage Management Of Distribution Networks With High Penetration Of Distributed Photovoltaic Generation Sources

    Get PDF
    Installation of photovoltaic (PV) units could lead to great challenges to the existing electrical systems. Issues such as voltage rise, protection coordination, islanding detection, harmonics, increased or changed short-circuit levels, etc., need to be carefully addressed before we can see a wide adoption of this environmentally friendly technology. Voltage rise or overvoltage issues are of particular importance to be addressed for deploying more PV systems to distribution networks. This dissertation proposes a comprehensive solution to deal with the voltage violations in distribution networks, from controlling PV power outputs and electricity consumption of smart appliances in real time to optimal placement of PVs at the planning stage. The dissertation is composed of three parts: the literature review, the work that has already been done and the future research tasks. An overview on renewable energy generation and its challenges are given in Chapter 1. The overall literature survey, motivation and the scope of study are also outlined in the chapter. Detailed literature reviews are given in the rest of chapters. The overvoltage and undervoltage phenomena in typical distribution networks with integration of PVs are further explained in Chapter 2. Possible approaches for voltage quality control are also discussed in this chapter, followed by the discussion on the importance of the load management for PHEVs and appliances and its benefits to electric utilities and end users. A new real power capping method is presented in Chapter 3 to prevent overvoltage by adaptively setting the power caps for PV inverters in real time. The proposed method can maintain voltage profiles below a pre-set upper limit while maximizing the PV generation and fairly distributing the real power curtailments among all the PV systems in the network. As a result, each of the PV systems in the network has equal opportunity to generate electricity and shares the responsibility of voltage regulation. The method does not require global information and can be implemented either under a centralized supervisory control scheme or in a distributed way via consensus control. Chapter 4 investigates autonomous operation schedules for three types of intelligent appliances (or residential controllable loads) without receiving external signals for cost saving and for assisting the management of possible photovoltaic generation systems installed in the same distribution network. The three types of controllable loads studied in the chapter are electric water heaters, refrigerators deicing loads, and dishwashers, respectively. Chapter 5 investigates the method to mitigate overvoltage issues at the planning stage. A probabilistic method is presented in the chapter to evaluate the overvoltage risk in a distribution network with different PV capacity sizes under different load levels. Kolmogorov–Smirnov test (K–S test) is used to identify the most proper probability distributions for solar irradiance in different months. To increase accuracy, an iterative process is used to obtain the maximum allowable injection of active power from PVs. Conclusion and discussions on future work are given in Chapter 6
    • …
    corecore