938 research outputs found

    Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    Get PDF
    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail

    Human Exploration of Mars: Preliminary Lists of Crew Tasks

    Get PDF
    This is a preliminary report of ongoing research that has identified 1,125 tasks that are likely to be performed during initial human expeditions to Mars. The purpose of the report is to facilitate immediate access to the task inventory by researchers whose efforts might benefit from concrete examples of the work that will likely be performed by the first human explorers of Mars and the tasks for which crew members must be prepared to perform in response to emergencies. The research that led to the task lists is being conducted under Cooperative Agreement NNX15AW34G / NNX16AQ86G for the Human Factors and Behavioral Performance Element, Human Performance Program, NASAs Johnson Space Center. The study is ongoing and will conclude with a final report that documents all research activities and presents the results of task and ability analyses and the implications of study results to crew size and composition, personnel selection and training, and design of equipment and procedures. The research addresses the Risk of Inadequate Mission, Process, and Task Design and the Risk of Performance Errors Due to Training Deficiencies by identifying the work that will be performed during an expedition to Mars and the abilities, skills, and knowledge that will be required of crew members. The study began by developing the comprehensive inventory of 1,125 tasks that are likely to be performed during the 12 phases of initial human expeditions to Mars, from launch to landing 30 months later. This full-mission task inventory was generated by a comprehensive review of documentation and concepts of operations with the understanding that plans and tasks might change in response to continuing technological development. Note: This interim report includes no discussion of analyses and has been prepared solely to facilitate dissemination of the task lists to others whose research might benefit from detailed information about the work and other activities that are likely to be performed during the human exploration of Mars

    NASA Tech Briefs, July 2013

    Get PDF
    Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays; Multi-Dimensional Damage Detection for Surfaces and Structures; ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy; Autonomous Cryogenic Leak Detector for Improving Launch Site Operations; Submillimeter Planetary Atmospheric Chemistry Exploration Sounder; Method for Reduction of Silver Biocide Plating on Metal Surfaces; Silicon Micromachined Microlens Array for THz Antennas; Forward-Looking IED Detector Ground Penetrating Radar; Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication, Battery Charge Equalizer with Transformer Array; An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture; Dimmable Electronic Ballast for a Gas Discharge Lamp; Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology; Enhanced Schapery Theory Software Development for Modeling Failure of Fiber-Reinforced Laminates; High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants; Carbon Nanotube Microarrays Grown on Nanoflake Substrates; Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids; Microgravity Drill and Anchor System; 20 Granular Media-Based Tunable Passive Vibration Suppressor; 21 Miga Aero Actuator and 2D Machined Mechanical Binary Latch; Micro-XRF for In Situ Geological Exploration of Other Planets; Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power; Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms; Miniaturized, High-Speed, Modulated X-Ray Source; Hollow-Fiber Spacesuit Water Membrane Evaporator 25 High-Power Single-Mode 2.65-micrometers InGaAsSb/AlInGaAsSb Diode Lasers; Optical Device for Converting a Laser Beam Into Two Co-aligned but Oppositely Directed Beams; A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging; X-Ray Diffractive Optics; SynGenics Optimization System (SynOptSys); 29 CFD Script for Rapid TPS Damage Assessment; radEq Add-On Module for CFD Solver Loci-CHEM; Science Opportunity Analyzer (SOA) Version 8; 30 Autonomous Byte Stream Randomizer; Distributed Engine Control Empirical/Analytical Verification Tools; Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data; Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing; Linked Autonomous Interplanetary Satellite Orbit Navigation; Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing; Scheduling Operations for Massive Heterogeneous Clusters; Deepak Condenser Model (DeCoM); Flight Software Math Library; Recirculating 1-K-Pot for Pulse-Tube Cryostats; 35 Method for Processing Lunar Regolith Using Microwaves; Wells for In Situ Extraction of Volatiles from Regolith (WIEVR); and Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Fiscal year 1976 progress report on a feasibility study evaluating the use of surface penetrators for planetary exploration

    Get PDF
    The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites

    NASA Tech Briefs, August 2009

    Get PDF
    Topics covered include: Aligning a Receiving Antenna Array to Reduce Interference; Collecting Ground Samples for Balloon-Borne Instruments; Tethered Pyrotechnic Apparatus for Acquiring a Ground Sample; Enhanced Video-Oculography System; Joint Carrier-Phase Synchronization and LDPC Decoding; Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz Modular Battery Charge Controller; Efficient Multiplexer FPGA Block Structures Based on G4FETs; VLSI Microsystem for Rapid Bioinformatic Pattern Recognition; Low-Noise Amplifier for 100 to 180 GHz; Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures; Inert Welding/Brazing Gas Filters and Dryers; Fabricating Copper Nanotubes by Electrodeposition; Reducing Aerodynamic Drag on Empty Open Cargo Vehicles; Rotary Percussive Auto-Gopher for Deep Drilling and Sampling; More About Reconfigurable Exploratory Robotic Vehicles; Thermostatic Valves Containing Silicone-Oil Actuators; Improving Heat Flux Performance of Flat Surface in Spray-Cooling Systems; Treating Fibrous Insulation to Reduce Thermal Conductivity; Silica-Aerogel Composites Opacified with La(sub0.7)Sr(sub0.3)MnO3; Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles; Ceramic Fiber Structures for Cryogenic Load-Bearing Applications; Elastomer Reinforced with Carbon Nanotubes; Biologically Inspired Purification and Dispersion of SWCNTs; A Technique for Adjusting Eigenfrequencies of WGM Resonators; Low-Pressure, Field-Ionizing Mass Spectrometer; Modifying Operating Cycles to Increase Stability in a LITS; Chamber for Simulating Martian and Terrestrial Environments; Algorithm for Detecting a Bright Spot in an Image; Extreme Programming: Maestro Style; Adaptive Behavior for Mobile Robots; Protocol for Communication Networking for Formation Flying; Planning Complex Sequences Using Compressed Representations; and Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors

    Pressurized Rover Airlocks

    Full text link

    Space Resources Roundtable Six

    Get PDF
    Covers developing and utilizing the resources of space, including the Moon, Mars, and asteroids.Sponsored by: Colorado School of Mines, Lunar and Planetary Institute, Space Resources Roundtable, Inc.Steering Committee: Joe Burris, WorldTradeNetwork, R. Scott Baird, NASA Johnson Space Center, David Criswell, University of Houston, Michael B. Duke, Colorado School of Mines, Stephen Mackwell, Lunar and Planetary Institute, Clyde Parish, NASA Kennedy Space Center, Sanders Rosenberg, InSpace Propulsion, Inc., Frank Schowengerdt, NASA Headquarters, G. Jeffrey Taylor, University of Hawai'i, Lawrence Taylor, University a/Tennessee.PARTIAL CONTENTS: Dielectric Constant Measurements on Lunar Soils and- Terrestrial Minerals / R. C. Anderson, M. G. Buehler, S. Seshardri, and M. G. Schaap--Dust Mitigation of Astronaut Spacesuits / H. Angel, P. Thanh, and M Nakagawa--Toward a Sustainable Mars Infrastructure / R. L. Ash--Granular Materials and Risks In ISRU / R. P. Behringer and R. A. Wilkinson--ISRU Technology Modeling and Analysis / B. R. Blair, J. Diaz, B. Ruiz, and M. B. Duke--Costs and Benefits of ISRU-Based Human Space Exploration / B. R. Blair, M. B. Duke, J. Diaz, and B. Ruiz--Report on the Construction and Testing of a Bucket Wheel Excavator / D. S. Boucher and J Richard--The Lunar Polar Illumination Environment: What We Know & What We Don't / D. B. J. Bussey and P. D. Spudis--Lunar Simulants: JSC-l is Gone; The Need for New Standardized Root Simulants / J. L. Carter, D. S. McKay, L. A. Taylor, and W. D. Carrier III--Space Transportation for a Lunar Resources Base (LRB) / H. P. Davis

    NASA Tech Briefs, September 2012

    Get PDF
    Topics covered include: Beat-to-Beat Blood Pressure Monitor; Measurement Techniques for Clock Jitter; Lightweight, Miniature Inertial Measurement System; Optical Density Analysis of X-Rays Utilizing Calibration Tooling to Estimate Thickness of Parts; Fuel Cell/Electrochemical Cell Voltage Monitor; Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor; Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks; Antenna Calibration and Measurement Equipment; Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling; Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors; Plasma Treatment to Remove Carbon from Indium UV Filters; Telerobotics Workstation (TRWS) for Deep Space Habitats; Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer; On Shaft Data Acquisition System (OSDAS); ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays; Flexible Architecture for FPGAs in Embedded Systems; Polyurea-Based Aerogel Monoliths and Composites; Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds; Self-Cleaning Particulate Prefilter Media; Modular, Rapid Propellant Loading System/Cryogenic Testbed; Compact, Low-Force, Low-Noise Linear Actuator; Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link; Process for Measuring Over-Center Distances; Hands-Free Transcranial Color Doppler Probe; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Developing Physiologic Models for Emergency Medical Procedures Under Microgravity; PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores; Portable Intravenous Fluid Production Device for Ground Use; Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System; Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators; Whispering Gallery Mode Optomechanical Resonator; Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles; Self-Sealing Wet Chemistry Cell for Field Analysis; General MACOS Interface for Modeling and Analysis for Controlled Optical Systems; Mars Technology Rover with Arm-Mounted Percussive Coring Tool, Microimager, and Sample-Handling Encapsulation Containerization Subsystem; Fault-Tolerant, Real-Time, Multi-Core Computer System; Water Detection Based on Object Reflections; SATPLOT for Analysis of SECCHI Heliospheric Imager Data; Plug-in Plan Tool v3.0.3.1; Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum; Nonlinear Estimation Approach to Real-Time Georegistration from Aerial Images; Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications; Low-Cost Telemetry System for Small/Micro Satellites; Operator Interface and Control Software for the Reconfigurable Surface System Tri-ATHLETE; and Algorithms for Determining Physical Responses of Structures Under Load

    Benefits of a Single-Person Spacecraft for Weightless Operations

    Get PDF
    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 2

    Get PDF
    These 92 papers comprise a peer-reviewed selection of presentations by authors from NASA, the Lunar and Planetary Institute (LPI), industry, and academia at the Second Conference on Lunar Bases and Space Activities of the 21st Century. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics included the following: (1) design and operation of transportation systems to, in orbit around, and on the Moon; (2) lunar base site selection; (3) design, architecture, construction, and operation of lunar bases and human habitats; (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology; (5) recovery and use of lunar resources; (6) environmental and human factors of and life support technology for human presence on the Moon; and (7) program management of human exploration of the Moon and space
    • …
    corecore