1,222 research outputs found

    A Practical Cooperative Multicell MIMO-OFDMA Network Based on Rank Coordination

    Get PDF
    An important challenge of wireless networks is to boost the cell edge performance and enable multi-stream transmissions to cell edge users. Interference mitigation techniques relying on multiple antennas and coordination among cells are nowadays heavily studied in the literature. Typical strategies in OFDMA networks include coordinated scheduling, beamforming and power control. In this paper, we propose a novel and practical type of coordination for OFDMA downlink networks relying on multiple antennas at the transmitter and the receiver. The transmission ranks, i.e.\ the number of transmitted streams, and the user scheduling in all cells are jointly optimized in order to maximize a network utility function accounting for fairness among users. A distributed coordinated scheduler motivated by an interference pricing mechanism and relying on a master-slave architecture is introduced. The proposed scheme is operated based on the user report of a recommended rank for the interfering cells accounting for the receiver interference suppression capability. It incurs a very low feedback and backhaul overhead and enables efficient link adaptation. It is moreover robust to channel measurement errors and applicable to both open-loop and closed-loop MIMO operations. A 20% cell edge performance gain over uncoordinated LTE-A system is shown through system level simulations.Comment: IEEE Transactions or Wireless Communications, Accepted for Publicatio

    Hardware Impairments Aware Transceiver Design for Full-Duplex Amplify-and-Forward MIMO Relaying

    Full text link
    In this work we study the behavior of a full-duplex (FD) and amplify-and-forward (AF) relay with multiple antennas, where hardware impairments of the FD relay transceiver is taken into account. Due to the inter-dependency of the transmit relay power on each antenna and the residual self-interference in an FD-AF relay, we observe a distortion loop that degrades the system performance when the relay dynamic range is not high. In this regard, we analyze the relay function in presence of the hardware inaccuracies and an optimization problem is formulated to maximize the signal to distortion-plus-noise ratio (SDNR), under relay and source transmit power constraints. Due to the problem complexity, we propose a gradient-projection-based (GP) algorithm to obtain an optimal solution. Moreover, a nonalternating sub-optimal solution is proposed by assuming a rank-1 relay amplification matrix, and separating the design of the relay process into multiple stages (MuStR1). The proposed MuStR1 method is then enhanced by introducing an alternating update over the optimization variables, denoted as AltMuStR1 algorithm. It is observed that compared to GP, (Alt)MuStR1 algorithms significantly reduce the required computational complexity at the expense of a slight performance degradation. Finally, the proposed methods are evaluated under various system conditions, and compared with the methods available in the current literature. In particular, it is observed that as the hardware impairments increase, or for a system with a high transmit power, the impact of applying a distortion-aware design is significant.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore