1,265 research outputs found

    Bidding Behavior in Multi-Unit Auctions - An Experimental Investigation

    Get PDF
    We present laboratory experiments of five different multi-unit auction mechanisms. Two units of a homogeneous object were auctioned off among two bidders with flat demand for two units. We test whether expected demand reduction occurs in open and sealed-bid uniform-price auctions. Revenue equivalence is tested for these auctions as well as for the Ausubel, the Vickrey and the discriminatory sealed-bid auction. Furthermore, we compare the five mechanisms with respect to the efficient allocation of the units.Multi-Unit Auctions, Demand Reduction, Experimental Economics

    A Market-Based Model for Resource Allocation in Agent Systems

    Get PDF
    In traditional computational systems, resource owners have no incentive to subject themselves to additional risk and congestion associated with providing service to arbitrary agents, but there are applications that benefit from open environments. We argue for the use of markets to regulate agent systems. With market mechanisms, agents have the abilities to assess the cost of their actions, behave responsibly, and coordinate their resource usage both temporally and spatially. \par We discuss our market structure and mechanisms we have developed to foster secure exchange between agents and hosts. Additionally, we believe that certain agent applications encourage repeated interactions that benefit both agents and hosts, giving further reason for hosts to fairly accommodate agents. We apply our ideas to create a resource-allocation policy for mobile-agent systems, from which we derive an algorithm for a mobile agent to plan its expenditure and travel. With perfect information, the algorithm guarantees the agent\u27s optimal completion time. \par We relax the assumptions underlying our algorithm design and simulate our planning algorithm and allocation policy to show that the policy prioritizes agents by endowment, handles bursty workloads, adapts to situations where network resources are overextended, and that delaying agents\u27 actions does not catastrophically affect agents\u27 performance

    Multi-attribute auctions with different types of attributes: Enacting properties in multi-attribute auctions

    Get PDF
    International audienceMulti-attribute auctions allow agents to sell and purchase goods and services taking into account more attributes besides the price (e.g. service time, tolerances, qualities, etc.). In this paper we analyze attributes involved during the auction process and propose to classify them between verifiable attributes, unverifiable attributes and auctioneer provided attributes. According to this classification we present VMA2, a new Vickrey-based reverse multi-attribute auction mechanism which, taking into account the different types of attributes involved in the auction, allows the auction customization in order to suit the auctioneer needs. On the one hand, the use of auctioneer provided attributes enables the inclusion of different auction concepts such as social welfare, trust or robustness whilst, on the other hand, the use of verifiable attributes guarantee truthful bidding. The paper exemplifies the behaviour of VMA2 describing how an egalitarian allocation can be achieved. The mechanism is then tested in a simulated manufacturing environment and compared with other existing auction allocation methods

    Auction-Based Mechanisms for Electronic Procurement

    Full text link

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    Negotiation in Multi-Agent Systems

    No full text
    In systems composed of multiple autonomous agents, negotiation is a key form of interaction that enables groups of agents to arrive at a mutual agreement regarding some belief, goal or plan, for example. Particularly because the agents are autonomous and cannot be assumed to be benevolent, agents must influence others to convince them to act in certain ways, and negotiation is thus critical for managing such inter-agent dependencies. The process of negotiation may be of many different forms, such as auctions, protocols in the style of the contract net, and argumentation, but it is unclear just how sophisticated the agents or the protocols for interaction must be for successful negotiation in different contexts. All these issues were raised in the panel session on negotiation

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing
    corecore