1,938 research outputs found

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    Constant-size ciphertexts in threshold attribute-based encryption without dummy attributes

    Get PDF
    Attribute-based encryption (ABE) is an augmentation of public key encryption that allows users to encrypt and decrypt messages based on users’ attributes. In a ( t, s ) threshold ABE, users who can decrypt a ciphertext must hold at least t attributes among the s attributes specified by the encryptor. At PKC 2010, Herranz, Laguillaumie and Ràfols proposed the first threshold ABE with constant-size ciphertexts. In order to ensure the encryptor can flexibly select the attribute set and a threshold value, they use dummy attributes to satisfy the decryption requirement. The advantage of their scheme is that any addition or removal of the attributes will not require any change to users’ private keys or public parameters. Unfortunately, the need for dummy attributes makes their scheme inefficient, since the computational cost of encryption is linear to the size of selected attribute set and dummy attribute set. In this work, we improve Herranz et al.’s work, and propose a new threshold ABE scheme which does not use any dummy attribute . Our scheme not only retains the nice feature of Herranz et al.’s scheme, but also offers two improvements in comparison to the previous work. Firstly, the computational costs of encryption and decryption are only linear in the size of the selected attribute set. Secondly, without any dummy attribute, most of the computations can be conducted without the knowledge of the threshold t . Hence, threshold change in the encryption phase does not require complete recomputation of the ciphertext

    User-Centric Security and Privacy Mechanisms in Untrusted Networking and Computing Environments

    Get PDF
    Our modern society is increasingly relying on the collection, processing, and sharing of digital information. There are two fundamental trends: (1) Enabled by the rapid developments in sensor, wireless, and networking technologies, communication and networking are becoming more and more pervasive and ad hoc. (2) Driven by the explosive growth of hardware and software capabilities, computation power is becoming a public utility and information is often stored in centralized servers which facilitate ubiquitous access and sharing. Many emerging platforms and systems hinge on both dimensions, such as E-healthcare and Smart Grid. However, the majority information handled by these critical systems is usually sensitive and of high value, while various security breaches could compromise the social welfare of these systems. Thus there is an urgent need to develop security and privacy mechanisms to protect the authenticity, integrity and confidentiality of the collected data, and to control the disclosure of private information. In achieving that, two unique challenges arise: (1) There lacks centralized trusted parties in pervasive networking; (2) The remote data servers tend not to be trusted by system users in handling their data. They make existing security solutions developed for traditional networked information systems unsuitable. To this end, in this dissertation we propose a series of user-centric security and privacy mechanisms that resolve these challenging issues in untrusted network and computing environments, spanning wireless body area networks (WBAN), mobile social networks (MSN), and cloud computing. The main contributions of this dissertation are fourfold. First, we propose a secure ad hoc trust initialization protocol for WBAN, without relying on any pre-established security context among nodes, while defending against a powerful wireless attacker that may or may not compromise sensor nodes. The protocol is highly usable for a human user. Second, we present novel schemes for sharing sensitive information among distributed mobile hosts in MSN which preserves user privacy, where the users neither need to fully trust each other nor rely on any central trusted party. Third, to realize owner-controlled sharing of sensitive data stored on untrusted servers, we put forward a data access control framework using Multi-Authority Attribute-Based Encryption (ABE), that supports scalable fine-grained access and on-demand user revocation, and is free of key-escrow. Finally, we propose mechanisms for authorized keyword search over encrypted data on untrusted servers, with efficient multi-dimensional range, subset and equality query capabilities, and with enhanced search privacy. The common characteristic of our contributions is they minimize the extent of trust that users must place in the corresponding network or computing environments, in a way that is user-centric, i.e., favoring individual owners/users

    Ciphertext-policy attribute based encryption supporting access policy update

    Get PDF
    Attribute-based encryption (ABE) allows one-to-many encryption with static access control. In many occasions, the access control policy must be updated and the original encryptor might be required to re-encrypt the message, which is impractical, since the encryptor might be unavailable. Unfortunately, to date the work in ABE does not consider this issue yet, and hence this hinders the adoption of ABE in practice. In this work, we consider how to efficiently update access policies in Ciphertext-policy Attribute-based Encryption (CP-ABE) systems without re-encryption. We introduce a new notion of CP-ABE supporting access policy update that captures the functionalities of attribute addition and revocation to access policies. We formalize the security requirements for this notion, and subsequently construct two provably secure CP-ABE schemes supporting AND-gate access policy with constant-size ciphertext for user decryption. The security of our schemes are proved under the Augmented Multi-sequences of Exponents Decisional Diffie-Hellman assumption

    Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

    Full text link
    In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user's identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interactive key revocation, in the sense that the user is not required to interact with the key authority or some kind of trusted hardware to renew her private key without changing her public key (or identity). These schemes are either proven to be only selectively secure or have public parameters which grow linearly in a given security parameter. In this paper, we present two constructions of non-interactive RIBE that satisfy all the following three attractive properties: (i) proven to be adaptively secure under the Symmetric External Diffie-Hellman (SXDH) and the Decisional Linear (DLIN) assumptions; (ii) have constant-size public parameters; and (iii) preserve the anonymity of ciphertexts---a property that has not yet been achieved in all the current schemes
    • …
    corecore