1,853 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Massive M2M Access with Reliability Guarantees in LTE Systems

    Full text link
    Machine-to-Machine (M2M) communications are one of the major drivers of the cellular network evolution towards 5G systems. One of the key challenges is on how to provide reliability guarantees to each accessing device in a situation in which there is a massive number of almost-simultaneous arrivals from a large set of M2M devices. The existing solutions take a reactive approach in dealing with massive arrivals, such as non-selective barring when a massive arrival event occurs, which implies that the devices cannot get individual reliability guarantees. In this paper we propose a proactive approach, based on a standard operation of the cellular access. The access procedure is divided into two phases, an estimation phase and a serving phase. In the estimation phase the number of arrivals is estimated and this information is used to tune the amount of resources allocated in the serving phase. Our results show that the proactive approach is instrumental in delivering high access reliability to the M2M devices.Comment: Accepted for presentation in ICC 201

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.

    Interference management for moving networks in ultra-dense urban scenarios

    Get PDF
    The number of users relying on broadband wireless connectivity while riding public transportation vehicles is increasing significantly. One of the promising solutions is to deploy moving base stations on public transportation vehicles to form moving networks (MNs) that serve these vehicular users inside the vehicles. In this study, we investigated the benefits and challenges in deploying MNs in ultra-dense urban scenarios. We identified that the key challenge limiting the performance of MNs in ultra-dense urban scenarios is inter-cell interference, which is exacerbated by the urban canyon effects. To address this challenge, we evaluated different inter-cell interference coordination and multi-antenna interference suppression techniques for MNs. We showed that in using MNs together with effective interference management approaches, the quality of service for users in vehicles can be significantly improved, with negligible impacts on the performance of regular outdoor users
    • …
    corecore