4,142 research outputs found

    General Dynamic Scene Reconstruction from Multiple View Video

    Get PDF
    This paper introduces a general approach to dynamic scene reconstruction from multiple moving cameras without prior knowledge or limiting constraints on the scene structure, appearance, or illumination. Existing techniques for dynamic scene reconstruction from multiple wide-baseline camera views primarily focus on accurate reconstruction in controlled environments, where the cameras are fixed and calibrated and background is known. These approaches are not robust for general dynamic scenes captured with sparse moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume prior knowledge of the static background appearance and structure. The primary contributions of this paper are twofold: an automatic method for initial coarse dynamic scene segmentation and reconstruction without prior knowledge of background appearance or structure; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered backgrounds and multiple dynamic non-rigid objects such as people. Comparison with state-of-the-art approaches demonstrates improved accuracy in both multiple view segmentation and dense reconstruction. The proposed approach also eliminates the requirement for prior knowledge of scene structure and appearance

    Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    Full text link
    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.Comment: SPIE Real-Time Image and Video Processing Conference 200

    Pseudo-labels for Supervised Learning on Dynamic Vision Sensor Data, Applied to Object Detection under Ego-motion

    Full text link
    In recent years, dynamic vision sensors (DVS), also known as event-based cameras or neuromorphic sensors, have seen increased use due to various advantages over conventional frame-based cameras. Using principles inspired by the retina, its high temporal resolution overcomes motion blurring, its high dynamic range overcomes extreme illumination conditions and its low power consumption makes it ideal for embedded systems on platforms such as drones and self-driving cars. However, event-based data sets are scarce and labels are even rarer for tasks such as object detection. We transferred discriminative knowledge from a state-of-the-art frame-based convolutional neural network (CNN) to the event-based modality via intermediate pseudo-labels, which are used as targets for supervised learning. We show, for the first time, event-based car detection under ego-motion in a real environment at 100 frames per second with a test average precision of 40.3% relative to our annotated ground truth. The event-based car detector handles motion blur and poor illumination conditions despite not explicitly trained to do so, and even complements frame-based CNN detectors, suggesting that it has learnt generalized visual representations

    Vision-Based Production of Personalized Video

    No full text
    In this paper we present a novel vision-based system for the automated production of personalised video souvenirs for visitors in leisure and cultural heritage venues. Visitors are visually identified and tracked through a camera network. The system produces a personalized DVD souvenir at the end of a visitor’s stay allowing visitors to relive their experiences. We analyze how we identify visitors by fusing facial and body features, how we track visitors, how the tracker recovers from failures due to occlusions, as well as how we annotate and compile the final product. Our experiments demonstrate the feasibility of the proposed approach
    corecore