364 research outputs found

    A "poor man's" approach to topology optimization of natural convection problems

    Full text link
    Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified physics. The proposed method models the fluid flow using a potential flow model, which introduces an additional fluid property. This material property currently requires tuning of the model by comparison to numerical Navier-Stokes based solutions. Topology optimization based on the reduced-order model is shown to provide qualitatively similar designs, as those obtained using a full Navier-Stokes based model. The number of DOFs is reduced by 50% in two dimensions and the computational complexity is evaluated to be approximately 12.5% of the full model. We further compare to optimized designs obtained utilizing Newton's convection law.Comment: Preprint version. Please refer to final version in Structural Multidisciplinary Optimization https://doi.org/10.1007/s00158-019-02215-

    Stabilized lowest order finite element approximation for linear three-field poroelasticity

    Full text link
    A stabilized conforming mixed finite element method for the three-field (displacement, fluid flux and pressure) poroelasticity problem is developed and analyzed. We use the lowest possible approximation order, namely piecewise constant approximation for the pressure and piecewise linear continuous elements for the displacements and fluid flux. By applying a local pressure jump stabilization term to the mass conservation equation we ensure stability and avoid pressure oscillations. Importantly, the discretization leads to a symmetric linear system. For the fully discretized problem we prove existence and uniqueness, an energy estimate and an optimal a-priori error estimate, including an error estimate for the divergence of the fluid flux. Numerical experiments in 2D and 3D illustrate the convergence of the method, show the effectiveness of the method to overcome spurious pressure oscillations, and evaluate the added mass effect of the stabilization term.Comment: 25 page

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Decoupled, Linear, and Energy Stable Finite Element Method for the Cahn-Hilliard-Navier-Stokes-Darcy Phase Field Model

    Get PDF
    In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn—Hilliard—Navier—Stokes equations in the free flow region and Cahn—Hilliard—Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. © 2018 Society for Industrial and Applied Mathematics

    A mixed finite element method for Darcy’s equations with pressure dependent porosity

    Get PDF
    In this work we develop the a priori and a posteriori error analyses of a mixed finite element method for Darcy’s equations with porosity depending exponentially on the pressure. A simple change of variable for this unknown allows to transform the original nonlinear problem into a linear one whose dual-mixed variational formulation falls into the frameworks of the generalized linear saddle point problems and the fixed point equations satisfied by an affine mapping. According to the latter, we are able to show the well-posedness of both the continuous and discrete schemes, as well as the associated Cea estimate, by simply applying a suitable combination of the classical Babuska-Brezzi theory and the Banach fixed point Theorem. In particular, given any integer k ≥ 0, the stability of the Galerkin scheme is guaranteed by employing Raviart-Thomas elements of order k for the velocity, piecewise polynomials of degree k for the pressure, and continuous piecewise polynomials of degree k+1 for an additional Lagrange multiplier given by the trace of the pressure on the Neumann boundary. Note that the two ways of writing the continuous formulation suggest accordingly two different methods for solving the discrete schemes. Next, we derive a reliable and efficient residualbased a posteriori error estimator for this problem. The global inf-sup condition satisfied by the continuous formulation, Helmholtz decompositions, and the local approximation properties of the Raviart-Thomas and Cl´ement interpolation operators are the main tools for proving the reliability. In turn, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of both methods, confirming the aforementioned properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are reported.Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de ConcepciónUniversity of LausanneMinistry of Education, Youth and Sports of the Czech Republi

    Numerical approximation of phase field based shape and topology optimization for fluids

    Get PDF
    We consider the problem of finding optimal shapes of fluid domains. The fluid obeys the Navier--Stokes equations. Inside a holdall container we use a phase field approach using diffuse interfaces to describe the domain of free flow. We formulate a corresponding optimization problem where flow outside the fluid domain is penalized. The resulting formulation of the shape optimization problem is shown to be well-posed, hence there exists a minimizer, and first order optimality conditions are derived. For the numerical realization we introduce a mass conserving gradient flow and obtain a Cahn--Hilliard type system, which is integrated numerically using the finite element method. An adaptive concept using reliable, residual based error estimation is exploited for the resolution of the spatial mesh. The overall concept is numerically investigated and comparison values are provided
    • …
    corecore