55 research outputs found

    A permanent formula for the Jones polynomial

    Get PDF
    The permanent of a square matrix is defined in a way similar to the determinant, but without using signs. The exact computation of the permanent is hard, but there are Monte-Carlo algorithms that can estimate general permanents. Given a planar diagram of a link L with nn crossings, we define a 7n by 7n matrix whose permanent equals to the Jones polynomial of L. This result accompanied with recent work of Freedman, Kitaev, Larson and Wang provides a Monte-Carlo algorithm to any decision problem belonging to the class BQP, i.e. such that it can be computed with bounded error in polynomial time using quantum resources.Comment: To appear in Advances in Applied Mathematic

    Integration and Optimization of Multivariate Polynomials by Restriction onto a Random Subspace

    Full text link
    We consider the problem of efficient integration of an n-variate polynomial with respect to the Gaussian measure in R^n and related problems of complex integration and optimization of a polynomial on the unit sphere. We identify a class of n-variate polynomials f for which the integral of any positive integer power f^p over the whole space is well-approximated by a properly scaled integral over a random subspace of dimension O(log n). Consequently, the maximum of f on the unit sphere is well-approximated by a properly scaled maximum on the unit sphere in a random subspace of dimension O(log n). We discuss connections with problems of combinatorial counting and applications to efficient approximation of a hafnian of a positive matrix.Comment: 15 page

    Counting Popular Matchings in House Allocation Problems

    Full text link
    We study the problem of counting the number of popular matchings in a given instance. A popular matching instance consists of agents A and houses H, where each agent ranks a subset of houses according to their preferences. A matching is an assignment of agents to houses. A matching M is more popular than matching M' if the number of agents that prefer M to M' is more than the number of people that prefer M' to M. A matching M is called popular if there exists no matching more popular than M. McDermid and Irving gave a poly-time algorithm for counting the number of popular matchings when the preference lists are strictly ordered. We first consider the case of ties in preference lists. Nasre proved that the problem of counting the number of popular matching is #P-hard when there are ties. We give an FPRAS for this problem. We then consider the popular matching problem where preference lists are strictly ordered but each house has a capacity associated with it. We give a switching graph characterization of popular matchings in this case. Such characterizations were studied earlier for the case of strictly ordered preference lists (McDermid and Irving) and for preference lists with ties (Nasre). We use our characterization to prove that counting popular matchings in capacitated case is #P-hard
    • …
    corecore