6,932 research outputs found

    Approximating the Permanent of a Random Matrix with Vanishing Mean

    Full text link
    We show an algorithm for computing the permanent of a random matrix with vanishing mean in quasi-polynomial time. Among special cases are the Gaussian, and biased-Bernoulli random matrices with mean 1/lnln(n)^{1/8}. In addition, we can compute the permanent of a random matrix with mean 1/poly(ln(n)) in time 2^{O(n^{\eps})} for any small constant \eps>0. Our algorithm counters the intuition that the permanent is hard because of the "sign problem" - namely the interference between entries of a matrix with different signs. A major open question then remains whether one can provide an efficient algorithm for random matrices of mean 1/poly(n), whose conjectured #P-hardness is one of the baseline assumptions of the BosonSampling paradigm

    Counting magic squares in quasi-polynomial time

    Full text link
    We present a randomized algorithm, which, given positive integers n and t and a real number 0< epsilon <1, computes the number Sigma(n, t) of n x n non-negative integer matrices (magic squares) with the row and column sums equal to t within relative error epsilon. The computational complexity of the algorithm is polynomial in 1/epsilon and quasi-polynomial in N=nt, that is, of the order N^{log N}. A simplified version of the algorithm works in time polynomial in 1/epsilon and N and estimates Sigma(n,t) within a factor of N^{log N}. This simplified version has been implemented. We present results of the implementation, state some conjectures, and discuss possible generalizations.Comment: 30 page

    Enumerating contingency tables via random permanents

    Full text link
    Given m positive integers R=(r_i), n positive integers C=(c_j) such that sum r_i = sum c_j =N, and mn non-negative weights W=(w_{ij}), we consider the total weight T=T(R, C; W) of non-negative integer matrices (contingency tables) D=(d_{ij}) with the row sums r_i, column sums c_j, and the weight of D equal to prod w_{ij}^{d_{ij}}. We present a randomized algorithm of a polynomial in N complexity which computes a number T'=T'(R,C; W) such that T' < T < alpha(R, C) T' where alpha(R,C) = min{prod r_i! r_i^{-r_i}, prod c_j! c_j^{-c_j}} N^N/N!. In many cases, ln T' provides an asymptotically accurate estimate of ln T. The idea of the algorithm is to express T as the expectation of the permanent of an N x N random matrix with exponentially distributed entries and approximate the expectation by the integral T' of an efficiently computable log-concave function on R^{mn}. Applications to counting integer flows in graphs are also discussed.Comment: 19 pages, bounds are sharpened, references are adde

    Bounds on the permanent and some applications

    Full text link
    We give new lower and upper bounds on the permanent of a doubly stochastic matrix. Combined with previous work, this improves on the deterministic approximation factor for the permanent. We also give a combinatorial application of the lower bound, proving S. Friedland's "Asymptotic Lower Matching Conjecture" for the monomer-dimer problem

    A permanent formula for the Jones polynomial

    Get PDF
    The permanent of a square matrix is defined in a way similar to the determinant, but without using signs. The exact computation of the permanent is hard, but there are Monte-Carlo algorithms that can estimate general permanents. Given a planar diagram of a link L with nn crossings, we define a 7n by 7n matrix whose permanent equals to the Jones polynomial of L. This result accompanied with recent work of Freedman, Kitaev, Larson and Wang provides a Monte-Carlo algorithm to any decision problem belonging to the class BQP, i.e. such that it can be computed with bounded error in polynomial time using quantum resources.Comment: To appear in Advances in Applied Mathematic

    A polynomial-time approximation algorithm for the number of k-matchings in bipartite graphs

    Full text link
    We show that the number of kk-matching in a given undirected graph GG is equal to the number of perfect matching of the corresponding graph GkG_k on an even number of vertices divided by a suitable factor. If GG is bipartite then one can construct a bipartite GkG_k. For bipartite graphs this result implies that the number of kk-matching has a polynomial-time approximation algorithm. The above results are extended to permanents and hafnians of corresponding matrices.Comment: 6 page
    • …
    corecore