187,536 research outputs found

    Adaptive Resource Management for Uncertain Execution Platforms

    Get PDF
    Embedded systems are becoming increasingly complex. At the same time, the components that make up the system grow more uncertain in their properties. For example, current developments in CPU design focuses on optimizing for average performance rather than better worst case performance. This, combined with presence of 3rd party software components with unknown properties, makes resource management using prior knowledge less and less feasible. This thesis presents results on how to model software components so that resource allocation decisions can be made on-line. Both the single and multiple resource case is considered as well as extending the models to include resource constraints based on hardware dynam- ics. Techniques for estimating component parameters on-line are presented. Also presented is an algorithm for computing an optimal allocation based on a set of convex utility functions. The algorithm is designed to be computationally efficient and to use simple mathematical expres- sions that are suitable for fixed point arithmetics. An implementation of the algorithm and results from experiments is presented, showing that an adaptive strategy using both estimation and optimization can outperform a static approach in cases where uncertainty is high

    Signal and System Design for Wireless Power Transfer : Prototype, Experiment and Validation

    Get PDF
    A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.Comment: Accepted to IEEE Transactions on Wireless Communication

    Pilot Beam Sequence Design for Channel Estimation in Millimeter-Wave MIMO Systems: A POMDP Framework

    Full text link
    In this paper, adaptive pilot beam sequence design for channel estimation in large millimeter-wave (mmWave) MIMO systems is considered. By exploiting the sparsity of mmWave MIMO channels with the virtual channel representation and imposing a Markovian random walk assumption on the physical movement of the line-of-sight (LOS) and reflection clusters, it is shown that the sparse channel estimation problem in large mmWave MIMO systems reduces to a sequential detection problem that finds the locations and values of the non-zero-valued bins in a two-dimensional rectangular grid, and the optimal adaptive pilot design problem can be cast into the framework of a partially observable Markov decision process (POMDP). Under the POMDP framework, an optimal adaptive pilot beam sequence design method is obtained to maximize the accumulated transmission data rate for a given period of time. Numerical results are provided to validate our pilot signal design method and they show that the proposed method yields good performance.Comment: 6 pages, 6 figures, submitted to IEEE ICC 201
    • …
    corecore