1,712 research outputs found

    Two-dimensional volume-frozen percolation: exceptional scales

    Get PDF
    We study a percolation model on the square lattice, where clusters "freeze" (stop growing) as soon as their volume (i.e. the number of sites they contain) gets larger than N, the parameter of the model. A model where clusters freeze when they reach diameter at least N was studied in earlier papers. Using volume as a way to measure the size of a cluster - instead of diameter - leads, for large N, to a quite different behavior (contrary to what happens on the binary tree, where the volume model and the diameter model are "asymptotically the same"). In particular, we show the existence of a sequence of "exceptional" length scales.Comment: 20 pages, 2 figure

    Jamming percolation and glassy dynamics

    Full text link
    We present a detailed physical analysis of the dynamical glass-jamming transition which occurs for the so called Knight models recently introduced and analyzed in a joint work with D.S.Fisher \cite{letterTBF}. Furthermore, we review some of our previous works on Kinetically Constrained Models. The Knights models correspond to a new class of kinetically constrained models which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to the underlying percolation transition of particles which are mutually blocked by the constraints. This jamming percolation has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law when ρρc\rho\nearrow\rho_c. These properties give rise for Knight models to an ergodicity breaking transition at ρc\rho_c: at and above ρc\rho_{c} a finite fraction of the system is frozen. In turn, this finite jump in the density of frozen sites leads to a two step relaxation for dynamic correlations in the unjammed phase, analogous to that of glass forming liquids. Also, due to the faster than power law divergence of the dynamical correlation length, relaxation times diverge in a way similar to the Vogel-Fulcher law.Comment: Submitted to the special issue of Journal of Statistical Physics on Spin glasses and related topic

    Cooperative Behavior of Kinetically Constrained Lattice Gas Models of Glassy Dynamics

    Full text link
    Kinetically constrained lattice models of glasses introduced by Kob and Andersen (KA) are analyzed. It is proved that only two behaviors are possible on hypercubic lattices: either ergodicity at all densities or trivial non-ergodicity, depending on the constraint parameter and the dimensionality. But in the ergodic cases, the dynamics is shown to be intrinsically cooperative at high densities giving rise to glassy dynamics as observed in simulations. The cooperativity is characterized by two length scales whose behavior controls finite-size effects: these are essential for interpreting simulations. In contrast to hypercubic lattices, on Bethe lattices KA models undergo a dynamical (jamming) phase transition at a critical density: this is characterized by diverging time and length scales and a discontinuous jump in the long-time limit of the density autocorrelation function. By analyzing generalized Bethe lattices (with loops) that interpolate between hypercubic lattices and standard Bethe lattices, the crossover between the dynamical transition that exists on these lattices and its absence in the hypercubic lattice limit is explored. Contact with earlier results are made via analysis of the related Fredrickson-Andersen models, followed by brief discussions of universality, of other approaches to glass transitions, and of some issues relevant for experiments.Comment: 59 page

    Critical percolation in the dynamics of the 2d ferromagnetic Ising model

    Full text link
    We study the early time dynamics of the 2d ferromagnetic Ising model instantaneously quenched from the disordered to the ordered, low temperature, phase. We evolve the system with kinetic Monte Carlo rules that do not conserve the order parameter. We confirm the rapid approach to random critical percolation in a time-scale that diverges with the system size but is much shorter than the equilibration time. We study the scaling properties of the evolution towards critical percolation and we identify an associated growing length, different from the curvature driven one. By working with the model defined on square, triangular and honeycomb microscopic geometries we establish the dependence of this growing length on the lattice coordination. We discuss the interplay with the usual coarsening mechanism and the eventual fall into and escape from metastability.Comment: 67 pages, 33 figure

    A percolation process on the binary tree where large finite clusters are frozen

    Get PDF
    We study a percolation process on the planted binary tree, where clusters freeze as soon as they become larger than some fixed parameter N. We show that as N goes to infinity, the process converges in some sense to the frozen percolation process introduced by Aldous. In particular, our results show that the asymptotic behaviour differs substantially from that on the square lattice, on which a similar process has been studied recently by van den Berg, de Lima and Nolin.Comment: 11 page

    Percolation with constant freezing

    Full text link
    We introduce and study a model of percolation with constant freezing (PCF) where edges open at constant rate 1, and clusters freeze at rate \alpha independently of their size. Our main result is that the infinite volume process can be constructed on any amenable vertex transitive graph. This is in sharp contrast to models of percolation with freezing previously introduced, where the limit is known not to exist. Our interest is in the study of the percolative properties of the final configuration as a function of \alpha. We also obtain more precise results in the case of trees. Surprisingly the algebraic exponent for the cluster size depends on the degree, suggesting that there is no lower critical dimension for the model. Moreover, even for \alpha<\alpha_c, it is shown that finite clusters have algebraic tail decay, which is a signature of self organised criticality. Partial results are obtained on Z^d, and many open questions are discussed.Comment: 30 pages, 8 figure

    Glassy behavior of the site frustrated percolation model

    Full text link
    The dynamical properties of the site frustrated percolation model are investigated and compared with those of glass forming liquids. When the density of the particles on the lattice becomes high enough, the dynamics of the model becomes very slow, due to geometrical constraints, and rearrangement on large scales is needed to allow relaxation. The autocorrelation functions, the specific volume for different cooling rates, and the mean square displacement are evaluated, and are found to exhibit glassy behavior.Comment: 8 pages, RevTeX, 11 fig

    Generalized contact process on random environments

    Full text link
    Spreading from a seed is studied by Monte Carlo simulation on a square lattice with two types of sites affecting the rates of birth and death. These systems exhibit a critical transition between survival and extinction. For time- dependent background, this transition is equivalent to those found in homogeneous systems (i.e. to directed percolation). For frozen backgrounds, the appearance of Griffiths phase prevents the accurate analysis of this transition. For long times in the subcritical region, spreading remains localized in compact (rather than ramified) patches, and the average number of occupied sites increases logarithmically in the surviving trials.Comment: 6 pages, 7 figure
    corecore