103 research outputs found

    JND-Based Perceptual Video Coding for 4:4:4 Screen Content Data in HEVC

    Get PDF
    The JCT-VC standardized Screen Content Coding (SCC) extension in the HEVC HM RExt + SCM reference codec offers an impressive coding efficiency performance when compared with HM RExt alone; however, it is not significantly perceptually optimized. For instance, it does not include advanced HVS-based perceptual coding methods, such as JND-based spatiotemporal masking schemes. In this paper, we propose a novel JND-based perceptual video coding technique for HM RExt + SCM. The proposed method is designed to further improve the compression performance of HM RExt + SCM when applied to YCbCr 4:4:4 SC video data. In the proposed technique, luminance masking and chrominance masking are exploited to perceptually adjust the Quantization Step Size (QStep) at the Coding Block (CB) level. Compared with HM RExt 16.10 + SCM 8.0, the proposed method considerably reduces bitrates (Kbps), with a maximum reduction of 48.3%. In addition to this, the subjective evaluations reveal that SC-PAQ achieves visually lossless coding at very low bitrates.Comment: Preprint: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Turbo-Detected Unequal Error Protection Irregular Convolutional Codes Designed for the Wideband Advanced Multirate Speech Codec

    No full text
    Abstract—since the different bits of multimedia information, such as speech and video, have different error sensitivity, efficient unequalprotection channel coding schemes have to be used to ensure that the perceptually more important bits benefit from more powerful protection. Furthermore, in the context of turbo detection the channel codes should also match the characteristics of the channel for the sake of attaining a good convergence performance. In this paper, we address this design dilemma by using irregular convolutional codes (IRCCs) which constitute a family of different-rate subcodes. we benefit from the high design flexibility of IRCCs and hence excellent convergence properties are maintained while having unequal error protection capabilities matched to the requirements of the source. An EXIT chart based design procedure is proposed and used in the context of protecting the different-sensitivity speech bits of the wideband AMR speech codec. As a benefit, the unequalprotection system using IRCCs exhibits an SNR advantage of about 0.4dB over the equal-protection system employing regular convolutional codes, when communicating over a Gaussian channel

    A turbo-coded burst-by-burst adaptive wide-band speech transceiver

    Full text link

    Low bit Rate Video Quality Analysis Using NRDPF-VQA Algorithm

    Get PDF
    In this work, we propose NRDPF-VQA (No Reference Distortion Patch Features Video Quality Assessment) model aims to use to measure the video quality assessment for H.264/AVC (Advanced Video Coding). The proposed method takes advantage of the contrast changes in the video quality by luminance changes. The proposed quality metric was tested by using LIVE video database. The experimental results show that the new index performance compared with the other NR-VQA models that require training on LIVE video databases, CSIQ video database, and VQEG HDTV video database. The values are compared with human score index analysis of DMOS

    A Video Transmission System Based on a Human Visual Model

    Get PDF
    This paper presents a joint source-channel coding scheme of digital video broadcasting over satellite channels. The video compression is based on a human visual model. A perceptual distortion model, the just-noticeable-distortion (JND), is applied to improve the subjective quality of compressed videos. 3-D wavelet decomposition can remove spatial and temporal redundancy and provide scalability of video quality. In order to conceal the errors occurring under bad channel conditions, a novel slicing method and a joint source channel coding scenario that combines RCPC with CRC and utilizes the distortion information to allocate convolutional coding rates are presented. A new performance index based on JND is proposed and used to evaluate the overall performance at different signal-to-noise ratios (SNR). Our system uses the OQPSK modulation scheme.VTC 1999</i

    3D Wavelet-Based Video Codec with Human Perceptual Model

    Get PDF
    This thesis explores the use of a human perceptual model in video compression, channel coding, error concealment and subjective image quality measurement. The perceptual distortion model just-noticeable-distortion (JND) is investigated. A video encoding/decoding scheme based on 3D wavelet decomposition and the human perceptual model is implemented. It provides a prior compression quality control which is distinct from the conventional video coding system. JND is applied in quantizer design to improve the subjective quality ofcompressed video. The 3D wavelet decomposition helps to remove spatial and temporal redundancy and provides scalability of video quality. In order to conceal the errors that may occur under bad wireless channel conditions, a slicing method and a joint source channel coding scenario that combines RCPC with CRC and uses the distortion information toallocate convolutional coding rates are proposed. A new subjective quality index based on JND is proposed and used to evaluate the overall performance at different signal to noise ratios (SNR) and at different compression ratios.Due to the wide use of arithmetic coding (AC) in data compression, we consider it as a readily available unit in the video codec system for broadcasting. A new scheme for conditional access (CA) sub-system is designed based on the cryptographic property of arithmetic coding. Itsperformance is analyzed along with its application in a multi-resolution video compression system. This scheme simplifies the conditional access sub-system and provides satisfactory system reliability

    Considering Bluetooth's Subband Codec (SBC) for Wideband Speech and Audio on the Internet

    Get PDF
    The Bluetooth Special Interest Group (SIG) has standardized the subband coding (SBC) audio codec to connect headphones via wireless Bluetooth links. SBC compresses audio at high fidelity while having an ultra-low algorithm delay. To make SBC suitable for the Internet, we extend it by using a time and packet loss concealment (PLC) algorithm that is based on ITU's G.711 Appendix I. The design is novel in the aspect of the interface between codec and speech receiver. We developed a new approach on how to distribute the functionality of a speech receiver between codec and application. Our approach leads to easier implementations of high quality VoIP applications. We conducted subjective and objective listening tests of the audio quality of SBC and PLC in order to determine an optimal coding mode and the trade-off between coding mode and packet loss rate. More precisely, we conducted MUSHRA listening tests for selected sample items. These tests results are then compared with the results of multiple objective assessment algorithms (ITU P.862 PESQ, ITU BS.1387-1 PEAQ, Creusere's algorithm). We found out that a combination of the PEAQ basic and advanced values best matches---after third order linear regression---the subjective MUSHRA results . The linear regression has coefficient of determination of RÂČ=0.907ÂČ. By comparison, our individual human ratings show a correlation of about R=0.9 compared to our averaged human rating results. Using the combination of both PEAQ algorithms, we calculate hundred thousands of objective audio quality ratings varying audio content and algorithmic parameters of SBC and PLC. The results show which set of parameters value are best suitable for a bandwidth and delay constrained link. The transmission quality of SBC is enhanced significantly by selecting optimal encoding parameters as compared to the default parameter sets given in the standard. Finally, we present preliminary objective tests results on the comparison of the audio codecs SBC, CELT, APT-X and ULD coding speech and audio transmission. They all allow a mono and stereo transmission of music at ultra-low coding delays (<10ms), which is especially useful for distributed ensemble performances over the Internet

    Video Coding with Motion-Compensated Lifted Wavelet Transforms

    Get PDF
    This article explores the efficiency of motion-compensated three-dimensional transform coding, a compression scheme that employs a motion-compensated transform for a group of pictures. We investigate this coding scheme experimentally and theoretically. The practical coding scheme employs in temporal direction a wavelet decomposition with motion-compensated lifting steps. Further, we compare the experimental results to that of a predictive video codec with single-hypothesis motion compensation and comparable computational complexity. The experiments show that the 5/3 wavelet kernel outperforms both the Haar kernel and, in many cases, the reference scheme utilizing single-hypothesis motion-compensated predictive coding. The theoretical investigation models this motion-compensated subband coding scheme for a group of K pictures with a signal model for K motion-compensated pictures that are decorrelated by a linear transform. We utilize the Karhunen-Loeve Transform to obtain theoretical performance bounds at high bit-rates and compare to both optimum intra-frame coding of individual motion-compensated pictures and single-hypothesis motion-compensated predictive coding. The investigation shows that motion-compensated three-dimensional transform coding can outperform predictive coding with single-hypothesis motion compensation by up to 0.5 bits/sample

    Depth perceptual video coding for free viewpoint video based on H.264/AVC

    Get PDF
    A novel scheme for depth sequences compression, based on a perceptual coding algorithm, is proposed. A depth sequence describes the object position in the 3D scene, and is used, in Free Viewpoint Video, for the generation of synthetic video sequences. In perceptual video coding the human visual system characteristics are exploited to improve the compression efficiency. As depth sequences are never shown, the perceptual video coding, assessed over them, is not effective. The proposed algorithm is based on a novel perceptual rate distortion optimization process, assessed over the perceptual distortion of the rendered views generated through the encoded depth sequences. The experimental results show the effectiveness of the proposed method, able to obtain a very considerable improvement of the rendered view perceptual quality

    High dynamic range video compression exploiting luminance masking

    Get PDF
    • 

    corecore