6 research outputs found

    A Review of Inference Algorithms for Hybrid Bayesian Networks

    Get PDF
    Hybrid Bayesian networks have received an increasing attention during the last years. The difference with respect to standard Bayesian networks is that they can host discrete and continuous variables simultaneously, which extends the applicability of the Bayesian network framework in general. However, this extra feature also comes at a cost: inference in these types of models is computationally more challenging and the underlying models and updating procedures may not even support closed-form solutions. In this paper we provide an overview of the main trends and principled approaches for performing inference in hybrid Bayesian networks. The methods covered in the paper are organized and discussed according to their methodological basis. We consider how the methods have been extended and adapted to also include (hybrid) dynamic Bayesian networks, and we end with an overview of established software systems supporting inference in these types of models

    Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft

    Towards Real-Time, On-Board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, and hardware components. This system can detect and diagnose failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and Bayesian probabilistic fault diagnosis; and (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software. We call this approach rt-R2U2, a name derived from its requirements. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual flight data from the NASA Swift UAS

    Towards Real-time, On-board, Hardware-supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, and hardware components. This system can detect and diagnose failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and Bayesian probabilistic fault diagnosis; and (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software. We call this approach rt-R2U2, a name derived from its requirements. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual flight data from the NASA Swift UAS

    A Parallel Lauritzen-Spiegelhalter Algorithm for Probabilistic Inference

    No full text
    Probabilistic inference in belief networks is a promising technique for diagnosis, forecasting and decision analysis tasks. Unfortunately, exact inference can be very expensive computationally. In this paper, we examine whether probabilistic inference can be sped up effectively through parallel computation on real multiprocessors. Our experiments are performed on a 32-processor Stanford DASH multiprocessor, a cachecoherent shared-address-space machine with physically distributed main memory. We find that the major part of the calculation can be moved outside the actual propagation through the network, and yields good speedups. Speedups for the propagation itself depend on the structure of the network and the size of the cliques that the algorithm creates. We demonstrate good speedup on a CPCS subnetwork used for medical diagnosis. This result as well as a tendency for the speedup to increase with the size of the network invites practical application of parallel techniques for large Bay..

    Байєсівські мережі в системах підтримки прийняття рішень

    Get PDF
    Пропонується докладне висвітлення сучасних підходів до моделювання процесів довільної природи за допомогою байєсівських мереж (БМ) і дерев рішень. Байєсівська мережа – ймовірнісна модель, преставлена у формі спрямованого ациклічного графа, вершинами якого є змінні досліджуваного процесу. БМ – потужний сучасний інструмент моделювання процесів та об’єктів, які функціонують в умовах наявності невизначеностей довільної природи. Їх успішно використовують для розв’язання задач прогнозування, передбачення, медичної і технічної діагностики, прийняття управлінських рішень, автоматичного керування і т. ін. Розглянуто теорію побудови байєсівських мереж, яка включає задачі навчання структури мережі та формування ймовірнісного висновку на її основі. Наведено практичні методики побудови (оцінювання) структури мережі на основі статистичних даних і експертних оцінок. Докладно описано відповідні алгоритмічні процедури. Окремо розглянуто варіанти використання дискретних і неперервних змінних, а також можливості створення гібридної мережі. Наведено кілька методів обчислення ймовірнісного висновку за допомогою побудованої мережі, у тому числі методи формування точного і наближеного висновків. Докладно розглянуто приклади розв’язання практичних задач за допомогою мереж Байєса. Зокрема, задачі моделювання, прогнозування і розпізнавання образів. Наведено перелік відомих програмних продуктів та їх виробників для побудови та застосування байєсівських мереж, частина з яких є повністю доступними для використання у мережі Інтернет. Деякі системи можна доповнювати новими програмними модулями. Книга рекомендується як навчальний посібник для студентів, аспірантів та викладачів, а також для інженерів, які спеціалізуються у галузі розв’язання задач ймовірнісного математичного моделювання, прогнозування, передбачення і розпізнавання образів процесів довільної природи, інформація стосовно який представлена статистичними даними та експертними оцінками
    corecore