162 research outputs found

    DESIGN OF ELECTRONIC BALLAST OF ONE BALLAST-TWO LAMP SYSTEM USING RAPID START TECHNIQUE

    Get PDF
    This project is about designing electronic ballast of one ballast–two lamp system using rapid start technique. Rapid start technique will start lamps quickly without flicker by heating the lamps electrodes and simultaneously applying the starting voltage. Rapid start technique is chosen because it provides a low starting voltage about 3.5 volts to the electrodes for one second before lamp ignition. The proposed circuit design consists of full bridge rectifier and boost converter, as a power factor correction (PFC) stage, integrate with a resonant half bridge inverter, used as lamp power control stage. Two lamps connection in parallel will be used as load to verify the objective. All the development of designing electronic ballast using one ballast–two lamp system with rapid start technique and the simulation will be through Multisim. This project is aim to design and improve the electronic ballast based on initial voltage and initial current. It is found that the current to the load is lower when two lamps are used

    Revision of the EU Green Public Procurement Criteria for Street Lighting and Traffic Signals - Preliminary Report

    Get PDF
    Lighting is used on more than 1.6 million km of roads in EU28 countries, accounting for some 35 TWh of electricity consumption (1.3% of total electricity consumption) and costing public authorities almost €4000 million each year. A broad review of relevant technical, policy, academic and legislative literature has been conducted. This report examines the current market situation and the potential for reducing environmental impacts and electricity costs by assessing the recent developments in road lighting technology, particularly LEDs. Particularly important areas identified relate to energy efficiency, light pollution, product durability and, specifically for longer lasting and rapidly evolving new LED technologies, reparability and upgradeability. The information in this report shall serve as a basis for discussion with stakeholders about the further development and revision of EU GPP criteria for street lighting and traffic signals.JRC.B.5-Circular Economy and Industrial Leadershi

    DESIGN OF ELECTRONIC BALLAST OF ONE BALLAST-TWO LAMP SYSTEM USING RAPID START TECHNIQUE

    Get PDF
    This project is about designing electronic ballast of one ballast–two lamp system using rapid start technique. Rapid start technique will start lamps quickly without flicker by heating the lamps electrodes and simultaneously applying the starting voltage. Rapid start technique is chosen because it provides a low starting voltage about 3.5 volts to the electrodes for one second before lamp ignition. The proposed circuit design consists of full bridge rectifier and boost converter, as a power factor correction (PFC) stage, integrate with a resonant half bridge inverter, used as lamp power control stage. Two lamps connection in parallel will be used as load to verify the objective. All the development of designing electronic ballast using one ballast–two lamp system with rapid start technique and the simulation will be through Multisim. This project is aim to design and improve the electronic ballast based on initial voltage and initial current. It is found that the current to the load is lower when two lamps are used

    Cost-benefit analysis and emission reduction of energy efficient lighting at the Universiti Tenaga Nasional.

    Full text link
    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment

    Electronic operation and control of high-intensity gas-discharge lamps

    Get PDF
    The ever increasing amount of global energy consumption based on the application of fossil fuels is threatening the earth’s natural resources and environment. Worldwide, grid-based electric lighting consumes 19 % of total global electricity production. For this reason the transition towards energy efficient lighting plays an important environmental role. One of the key technologies in this transition is High-Intensity Discharge (HID) lighting. The technical revolution in gas-discharge lamps has resulted in the highlyefficient lamps that are available nowadays. As with most energy efficient light solutions, all HID lighting systems require a ballast to operate. Traditionally, magnetic ballast designs were the only choice available for HID lighting systems. Today, electronic lampdrivers can offer additional power saving, flicker free operation, and miniaturisation. Electronic lamp operation enables additional degrees of freedom in lamp-current control over the conventional electro-magnetic (EM) ballasts. The lamp-driver system performance depends on both the dynamics of the lamp and the driver. This thesis focuses on the optimisation of electronically operated HID systems, in terms of highly-efficient lamp-driver topologies and, more specifically, lamp-driver interaction control. First, highly-efficient power topologies to operate compact HID lamps on low-frequency-square-wave (LFSW) current are explored. The proposed two-stage electronic lamp-driver consists of a Power Factor Corrector (PFC) stage that meets the power utility standards. This converter is coupled to a stacked buck converter that controls the lamp-current. Both stages are operated in Zero Voltage Switching (ZVS) mode in order to reduce the switching losses. The resulting two-stage lamp-drivers feature flexible controllability, high efficiency, and high power density, and are suitable for power sandwich packaging. Secondly, lamp-driver interaction (LDI) has been studied in the simulation domain and control algorithms have been explored that improve the stability, and enable system optimisation. Two HID lamp models were developed. The first model describes the HID lamp’s small-signal electrical behaviour and its purpose is to aid to study the interaction stability. The second HID lamp model has been developed based on physics equations for the arc column and the electrode behaviour, and is intended for lampdriver simulations and control applications. Verification measurements have shown that the lamp terminal characteristics are present over a wide power and frequency range. Three LDI control algorithms were explored, using the proposed lampmodels. The first control principle optimises the LDI for a broad range of HID lamps operated at normal or reduced power. This approach consists of two control loops integrated into a fuzzy-logic controller that stabilises the lamp-current and optimises the commutation process. The second control problem concerns the application of ultra high performance (UHP) HID lamps in projection applications that typically set stringent requirements on the quality of the light generated by these lamps, and therefore the lampcurrent. These systems are subject to periodic disturbances synchronous with the LFSW commutation period. Iterative learning control (ILC) has been examined. It was experimentally verified that this algorithm compensates for repetitive disturbances. Third, Electronic HID operation also opens the door for continuous HID lamp dimming that can provide additional savings. To enable stable dimming, an observer-based HID lamp controller has been developed. This controller sets a stable minimum dim-level and monitors the gas-discharge throughout lamp life. The HID lamp observer derives physical lamp state signals from the HID arc discharge physics and the related photometric properties. Finally, practical measurements proved the proposed HID lamp observer-based control principle works satisfactorily

    Improving Building Sustainability: Lighting Life Cycle Optimization and Management, and HVAC Demand Response

    Full text link
    Residential and commercial buildings represent 39% of global energy carbon emissions. In the U.S., buildings consume 40% of the total energy consumption and thus represent a substantial energy saving opportunity. Additionally, building energy flexibility, or the ability to reduce or move demand to a different time, is playing an increasingly important role in grid modernization and renewable integration by helping to balance supply. Material efficiency is another foundation to sustainability, as many energy-efficient and renewable technologies depend on the use of specialty materials, which are dwindling in supply and many face geopolitical conflicts. This dissertation advances methods of life cycle analysis and data analytics while addressing some of these issues and opportunities in three key aspects – how to choose better products, how to better manage products at their end of life, and how to use energy more effectively. Chapter 2 and 3 examine the keep vs. replace conundrum by studying the replacement of residential and commercial lighting, in which the rapidly changing LED technology creates unclear tradeoffs with incumbent lighting in terms of cost, energy savings, and emissions. The results suggest that while LED lighting offers competitive performance and life cycle cost as fluorescent lighting, there is less advantage (or benefit) for immediate LED adoption in a lower use, upfront cost-sensitive, or slowly decarbonizing grid situation. Chapter 4 evaluates the life cycle impacts of recovering rare earth and critical metals from spent linear fluorescent and LED fixtures, respectively. This chapter also assesses the impacts of extended use and modular (component) replacement to assess the value of reverse logistics (reuse, remanufacturing, and recycling). The results show that both types of metal extraction create net environmental impacts, which can be mitigated with process optimization and waste preprocessing to increase extraction efficiency. While modular replacement leads to overall lower environmental burdens, full replacement can offer incentive for LED recycling as their metal-heavy housing structure and heat sink are attractive to recyclers. Chapter 5 performs piecewise log-linear-Fourier regressions on whole-home smart meter data and outdoor temperature data to disaggregate the thermostatically controlled loads from whole-home consumption and to estimate the technical thermal demand response potentials in the Midwest. The results suggest that single family buildings, being the higher energy users and larger customer base than multi-family, can provide higher per customer and aggregated demand flexibility. However, multi-family buildings, particularly those with a central HVAC system, may have the advantage of pooled demand across multiple units and should therefore be considered accordingly. By examining the three decision-making questions related to technology and product selection (Chapter 2 - 3), waste management and material recovery (Chapter 4), and energy use and demand response (Chapter 5), the research helps inform decision making for building managers and energy consumers, and provide industry with insights regarding product design, reverse logistics, and demand response program recruitment.PHDMech Eng & Nat Res Env PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163086/1/lixiliu_1.pd

    Free Level Threshold Zone (FLTZ) Logic For Mixed Analog-Digital Closed Loop Circuitry [TK7887.6. N335 2008 f rb].

    Get PDF
    Para penyelidik sentiasa mencari cara-cara penambahbaikan kaedah antara muka antara domain Analog dan Digital. Researchers have always look for ways to improve the interfacing method between the Analog and Digital domain

    Current Status And Prospects For Lighting Technologies In Senior Living Facilities

    Get PDF
    This case study of five senior living facilities in Northwestern North Carolina explains the current lighting scenarios commonly found in assisted living and skilled nursing long-term healthcare communities. The study argues existing lighting conditions in the indoor environments ordinarily found in these facilities–activity rooms, dining rooms, hallways, residents’ rooms, and bathrooms–do not meet current recommended lighting standards. Many qualitative benefits such as health and well-being relate to the technical qualities of artificial lighting including, but not limited to, the following: illuminance, color temperature, luminance, and value contrast. Current technologies–for example, BIOS technology and tunable white light–can help with elderly vision and circadian rhythm simulation. Additionally, with the advancement of LED technology, there are economic considerations for switching to a new lighting design. An extended examination of one of the five case study facilities substantiates that a retrofit LED lighting design will bring about annual energy cost savings and a short payback time as shown by a calculation of the return on investment

    Design of Controlled Environment for Tissue Engineering

    Get PDF
    Design of Controlled Environment for Tissue Engineering Malcolm Lapera Tissue engineering aims at relieving the need for donor tissue and organs by developing a process of creating viable tissues in the laboratory setting. With over 120,000 people awaiting a transplant, the need for generating tissue engineered organs is very large [3]. In order for organs to be engineered, a few issues need to be overcome. A work space that both creates an environment which maintains cell viability over an extended period of time as well as accommodates the necessary fabrication equipment will be needed to further tissue engineering research. Therefore, a design for a “Tissue Engineering Hood,” will be developed and evaluated. The goal of this design will provide an environment capable of providing 37°C, 95% humidity, and 5% CO2, actively deter contamination, and provide the necessary support hardware for a 3D printer designed for tissue engineering. The design detailed in this paper was implemented successfully and evaluated. The current design has issues creating the proper environmental conditions, however does actively prevent contamination, and provides the necessary support hardware for a 3D printer. The current design was capable of reaching a temperature of 32°C, had issues increasing the humidity while incorporating the laminar air flow aspect of the design, and design flaws in the door allowed CO2 to leak too rapidly. After remedying these and a few other minor issues described in the report, the tissue engineering hood will be a beneficial tool for use in tissue engineering

    Expert system for energy optimization of buildings using sustainable and resilient strategies

    Get PDF
    An expert system is developed using the science of heuristics to better model energy usage in existing commercial buildings and to predict future improvements more accurately. The software performs an initial audit analysis of all the major building systems including building envelope, HVAC, lighting, office equipment and appliances, water and hot water, and waste handling. A novel feature of the expert system is that it analyzes energy flow within the building more interactively and cohesively, as opposed to looking at each system individually as do most energy analysis tools on the current market. Both forward and backward chaining strategies are used to accomplish this. During the auditing process, the software queries user habits and system controls to understand occupant behavior, which can have a significant effect on actual energy usage. Responses are analyzed using Bayesian functions to develop heuristic factors, which are then applied to the results of the audit analysis. This ensures that energy usage is modeled as it is used and operated, as opposed to how it was designed, which can differ significantly. Once the heuristic factors are applied to audit results, the expert system performs a synchronization step with a forcing function to converge the calculated energy usage with actual consumption from the utility bills, so that energy efficiency may be optimized in the target building. The software then generates a list of recommended upgrades that are prioritized by cost, ease of implementation, and projected energy savings. Sustainable and resilient strategies are also recommended by the system, since it is becoming increasingly important that a building not only be “green” but also be resilient in the face of a disaster, natural or otherwise. The expert system is validated and calibrated with ten schools selected from the Newark Public Schools District in New Jersey. The test group of K-12 buildings proved ideal in that they all had similar usage but also represented a wide range of building age, size, and construction type. They were also subject to the temperature extremes of the Northeast climate. Although the expert system is calibrated for Newark school system, the data libraries are easily modified to model any number of building types and climates. In general, the model shows very good convergence with actual energy consumption for the ten schools as evidenced by an average synchronization adjustment of -0.9% for electric usage and 0.0% for natural gas. A key finding for the Newark study was the wide range of the heuristic index, which measures how occupant behavior and system controls affect the energy usage within a target building. The heuristic index for the “best” test case is 29%, while for the “worst” test case is 54%, or nearly double. Detail model results show that a well-trained staff and good building management are the most influential factors in reducing the heuristic index and thus energy consumption for a given school. The impacts of factors such as HVAC system type and construction materials on energy efficiency are found to be less significant for this test group. The overall model results suggest that a 17% average reduction in energy usage is achievable by improving building management and custodial staff training, and savings of 10% or more can be realized by implementing modest cost upgrades with rapid payback, such as replacing weather stripping, appliance timers, and filter maintenance
    corecore