5 research outputs found

    Novel Design of Quantum Circuits for Representation of Grayscale Images

    Full text link
    The advent of Quantum Computing has influenced researchers around the world to solve multitudes of computational problems with the promising technology. Feasibility of solutions for computational problems, and representation of various information, may allow quantum computing to replace classical computer in near future. One such challenge is the representation of digital images in quantum computer. Several works have been done to make it possible. One such promising technique, named Quantum Probability Image Encoding, requires minimal number of qubits, where the intensity of n pixels is represented as the statevector of log_2(n) qubits. Though there exist quantum circuit design techniques to obtain arbitrary statevector, they consider statevector in general Hilbert space. But for image data, considering only real vector space is sufficient, that may constraint the circuit in smaller gate set, and possibly can reduce number of gates required. In this paper, construction of such quantum circuits has been proposed

    Efficient quantum image representation and compression circuit using zero-discarded state preparation approach

    Full text link
    Quantum image computing draws a lot of attention due to storing and processing image data faster than classical. With increasing the image size, the number of connections also increases, leading to the circuit complex. Therefore, efficient quantum image representation and compression issues are still challenging. The encoding of images for representation and compression in quantum systems is different from classical ones. In quantum, encoding of position is more concerned which is the major difference from the classical. In this paper, a novel zero-discarded state connection novel enhance quantum representation (ZSCNEQR) approach is introduced to reduce complexity further by discarding '0' in the location representation information. In the control operational gate, only input '1' contribute to its output thus, discarding zero makes the proposed ZSCNEQR circuit more efficient. The proposed ZSCNEQR approach significantly reduced the required bit for both representation and compression. The proposed method requires 11.76\% less qubits compared to the recent existing method. The results show that the proposed approach is highly effective for representing and compressing images compared to the two relevant existing methods in terms of rate-distortion performance.Comment: 7 figure

    ЦвСтовая ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²ΠΊΠ° ΠΊΡƒΠ±ΠΈΡ‚Π½Ρ‹Ρ… состояний

    Get PDF
    Difficulties in algorithmic simulation of natural thinking point to the inadequacy of information encodings used to this end. The promising approach to this problem represents information by the qubit states of quantum theory, structurally aligned with major theories of cognitive semantics. The paper develops this idea by linking qubit states with color as fundamental carrier of affective meaning. The approach builds on geometric affinity of Hilbert space of qubit states and color solids, used to establish precise one-to-one mapping between them. This is enabled by original decomposition of qubit in three non-orthogonal basis vectors corresponding to red, green, and blue colors. Real-valued coefficients of such decomposition are identical to the tomograms of the qubit state in the corresponding directions, related to ordinary Stokes parameters by rotational transform. Classical compositions of black, white and six main colors (red, green, blue, yellow, magenta and cyan) are then mapped to analogous superposition of the qubit states. Pure and mixed colors intuitively map to pure and mixed qubit states on the surface and in the volume of the Bloch ball, while grayscale is mapped to the diameter of the Bloch sphere. Herewith, the lightness of color corresponds to the probability of the qubit’s basis state Β«1Β», while saturation and hue encode coherence and phase of the qubit, respectively. The developed code identifies color as a bridge between quantum-theoretic formalism and qualitative regularities of the natural mind. This opens prospects for deeper integration of quantum informatics in semantic analysis of data, image processing, and the development of nature-like computational architectures.Врудности алгоритмичСской ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΈ СстСствСнного ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΡ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π½Π΅ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… для этого Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΎΠ² прСдставлСния ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π’ этом ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ пСрспСктивна ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²ΠΊΠ° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΊΡƒΠ±ΠΈΡ‚Π½Ρ‹ΠΌΠΈ состояниями ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, структура ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… согласуСтся с ΠΊΡ€ΡƒΠΏΠ½Ρ‹ΠΌΠΈ тСориями ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ сСмантики. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ этого ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ ΠΊΡƒΠ±ΠΈΡ‚Π½Ρ‹Π΅ состояния с Ρ†Π²Π΅Ρ‚ΠΎΠΌ ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ носитСлСм ΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-смысловых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Основой для этого стало гСомСтричСскоС ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Ρ†Π²Π΅Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π» ΠΈ Π“ΠΈΠ»ΡŒΠ±Π΅Ρ€Ρ‚ΠΎΠ²Π° пространства ΠΊΡƒΠ±ΠΈΡ‚Π½Ρ‹Ρ… состояний, позволившСС ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Π²Π·Π°ΠΈΠΌΠΎΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ΅ матСматичСскоС ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅. Для этого использовано ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΡƒΠ±ΠΈΡ‚Π° ΠΏΠΎ Ρ‚Ρ€ΠΎΠΉΠΊΠ΅ Π½Π΅ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… красному, синСму ΠΈ Π·Π΅Π»Ρ‘Π½ΠΎΠΌΡƒ Ρ†Π²Π΅Ρ‚Π°ΠΌ. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ коэффициСнты Ρ‚Π°ΠΊΠΎΠ³ΠΎ разлоТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌΠΈ ΠΊΡƒΠ±ΠΈΡ‚Π½ΠΎΠ³ΠΎ состояния ΠΏΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ направлСниям, связанными с ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Бтокса ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°. ΠŸΡ€ΠΈ этом ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Ρ‡Ρ‘Ρ€Π½ΠΎΠ³ΠΎ, Π±Π΅Π»ΠΎΠ³ΠΎ ΠΈ ΡˆΠ΅ΡΡ‚ΠΈ основных Ρ†Π²Π΅Ρ‚ΠΎΠ² (красный, Π·Π΅Π»Ρ‘Π½Ρ‹ΠΉ, синий, ΠΆΡ‘Π»Ρ‚Ρ‹ΠΉ, Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²Ρ‹ΠΉ, Π³ΠΎΠ»ΡƒΠ±ΠΎΠΉ) Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌΠΈ супСрпозициями ΠΊΡƒΠ±ΠΈΡ‚Π½Ρ‹Ρ… состояний. ЧистыС ΠΈ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Π΅ Ρ†Π²Π΅Ρ‚Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ чистым ΠΈ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ состояниям Π½Π° повСрхности ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈ сфСры Π‘Π»ΠΎΡ…Π°, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΎΡ‚Ρ‚Π΅Π½ΠΊΠΈ сСрого ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π½Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ сфСры. ΠŸΡ€ΠΈ этом ΡΠ²Π΅Ρ‚Π»ΠΎΡΡ‚ΡŒ Ρ†Π²Π΅Ρ‚Π° соотвСтствуСт вСроятности базисного ΠΊΡƒΠ±ΠΈΡ‚Π½ΠΎΠ³ΠΎ состояния Β«1Β», Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π½Π°ΡΡ‹Ρ‰Π΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ†Π²Π΅Ρ‚Π° ΠΈ Ρ†Π²Π΅Ρ‚ΠΎΠ²ΠΎΠΉ Ρ‚ΠΎΠ½ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‚ ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ„Π°Π·Ρƒ ΠΊΡƒΠ±ΠΈΡ‚Π½ΠΎΠ³ΠΎ состояния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ возмоТности для использования ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… сСмантичСского Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ…, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ создания ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€
    corecore