27,200 research outputs found

    Determination of the scattering length for Rb-Cs X1Σ+^{1}\Sigma ^{+} ground electronic state using a variational method

    Full text link
    We performed the calculation of the scattering length for the elastic collision between the rubidium and cesium atoms. For this we applied a variational procedure based on the R-matrix theory for unbound states employing the finite element method (FEM) for expansion of the wave-function in terms of a finite set of local basis functions. The FEM presents as advantages the possibility of the development of a efficient matrix inversion algorithm which significantly reduces the computation time to calculate the R matrix. We also tested a potential energy curve with spectroscopic accuracy obtained before from a direct adjustment procedure of experimental data of the X1Σ+X^{1}\Sigma^{+} state based on genetic algorithm. The quality of our result was evaluated by comparing them with several ones previously published at literature.Comment: 15 pages, 6 tables and 2 figure

    A quantum genetic algorithm with quantum crossover and mutation operations

    Full text link
    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm which has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.Comment: 21 pages, 1 table, v2: typos corrected, minor modifications in sections 3.5 and 4, v3: minor revision, title changed (original title: Semiclassical genetic algorithm with quantum crossover and mutation operations), v4: minor revision, v5: minor grammatical corrections, to appear in QI
    • …
    corecore