486 research outputs found

    A novel plane based image registration pipeline with CNN scene parsing

    Get PDF
    Plane is one of the most important element for indoor man-made structural rooms, such as broadcasting studios, open lecture room and empty offices. The existing visual mapping algorithms cannot effectively detect and describe the visual features on an empty large or medium size plane. This article aims to introduce a novel frame-to-frame registration pipeline based on one medium-size plane on man-made object instead of multiple planes or small plane patches. By introducing a structural description of reference planar area with its contour data and CNN segmentation information, the proposed approach is able track the pose of camera with high accuracy and robustness in comparison with existing feature-based tracking or dense geometric tracking approaches

    Robotic Cameraman for Augmented Reality based Broadcast and Demonstration

    Get PDF
    In recent years, a number of large enterprises have gradually begun to use vari-ous Augmented Reality technologies to prominently improve the audiences’ view oftheir products. Among them, the creation of an immersive virtual interactive scenethrough the projection has received extensive attention, and this technique refers toprojection SAR, which is short for projection spatial augmented reality. However,as the existing projection-SAR systems have immobility and limited working range,they have a huge difficulty to be accepted and used in human daily life. Therefore,this thesis research has proposed a technically feasible optimization scheme so thatit can be practically applied to AR broadcasting and demonstrations. Based on three main techniques required by state-of-art projection SAR applica-tions, this thesis has created a novel mobile projection SAR cameraman for ARbroadcasting and demonstration. Firstly, by combining the CNN scene parsingmodel and multiple contour extractors, the proposed contour extraction pipelinecan always detect the optimal contour information in non-HD or blurred images.This algorithm reduces the dependency on high quality visual sensors and solves theproblems of low contour extraction accuracy in motion blurred images. Secondly, aplane-based visual mapping algorithm is introduced to solve the difficulties of visualmapping in these low-texture scenarios. Finally, a complete process of designing theprojection SAR cameraman robot is introduced. This part has solved three mainproblems in mobile projection-SAR applications: (i) a new method for marking con-tour on projection model is proposed to replace the model rendering process. Bycombining contour features and geometric features, users can identify objects oncolourless model easily. (ii) a camera initial pose estimation method is developedbased on visual tracking algorithms, which can register the start pose of robot to thewhole scene in Unity3D. (iii) a novel data transmission approach is introduced to establishes a link between external robot and the robot in Unity3D simulation work-space. This makes the robotic cameraman can simulate its trajectory in Unity3D simulation work-space and project correct virtual content. Our proposed mobile projection SAR system has made outstanding contributionsto the academic value and practicality of the existing projection SAR technique. Itfirstly solves the problem of limited working range. When the system is running ina large indoor scene, it can follow the user and project dynamic interactive virtualcontent automatically instead of increasing the number of visual sensors. Then,it creates a more immersive experience for audience since it supports the user hasmore body gestures and richer virtual-real interactive plays. Lastly, a mobile systemdoes not require up-front frameworks and cheaper and has provided the public aninnovative choice for indoor broadcasting and exhibitions

    Point cloud segmentation using hierarchical tree for architectural models

    Full text link
    Recent developments in the 3D scanning technologies have made the generation of highly accurate 3D point clouds relatively easy but the segmentation of these point clouds remains a challenging area. A number of techniques have set precedent of either planar or primitive based segmentation in literature. In this work, we present a novel and an effective primitive based point cloud segmentation algorithm. The primary focus, i.e. the main technical contribution of our method is a hierarchical tree which iteratively divides the point cloud into segments. This tree uses an exclusive energy function and a 3D convolutional neural network, HollowNets to classify the segments. We test the efficacy of our proposed approach using both real and synthetic data obtaining an accuracy greater than 90% for domes and minarets.Comment: 9 pages. 10 figures. Submitted in EuroGraphics 201

    Applications in Monocular Computer Vision using Geometry and Learning : Map Merging, 3D Reconstruction and Detection of Geometric Primitives

    Get PDF
    As the dream of autonomous vehicles moving around in our world comes closer, the problem of robust localization and mapping is essential to solve. In this inherently structured and geometric problem we also want the agents to learn from experience in a data driven fashion. How the modern Neural Network models can be combined with Structure from Motion (SfM) is an interesting research question and this thesis studies some related problems in 3D reconstruction, feature detection, SfM and map merging.In Paper I we study how a Bayesian Neural Network (BNN) performs in Semantic Scene Completion, where the task is to predict a semantic 3D voxel grid for the Field of View of a single RGBD image. We propose an extended task and evaluate the benefits of the BNN when encountering new classes at inference time. It is shown that the BNN outperforms the deterministic baseline.Papers II-­III are about detection of points, lines and planes defining a Room Layout in an RGB image. Due to the repeated textures and homogeneous colours of indoor surfaces it is not ideal to only use point features for Structure from Motion. The idea is to complement the point features by detecting a Wireframe – a connected set of line segments – which marks the intersection of planes in the Room Layout. Paper II concerns a task for detecting a Semantic Room Wireframe and implements a Neural Network model utilizing a Graph Convolutional Network module. The experiments show that the method is more flexible than previous Room Layout Estimation methods and perform better than previous Wireframe Parsing methods. Paper III takes the task closer to Room Layout Estimation by detecting a connected set of semantic polygons in an RGB image. The end­-to-­end trainable model is a combination of a Wireframe Parsing model and a Heterogeneous Graph Neural Network. We show promising results by outperforming state of the art models for Room Layout Estimation using synthetic Wireframe detections. However, the joint Wireframe and Polygon detector requires further research to compete with the state of the art models.In Paper IV we propose minimal solvers for SfM with parallel cylinders. The problem may be reduced to estimating circles in 2D and the paper contributes with theory for the two­view relative motion and two­-circle relative structure problem. Fast solvers are derived and experiments show good performance in both simulation and on real data.Papers V-­VII cover the task of map merging. That is, given a set of individually optimized point clouds with camera poses from a SfM pipeline, how can the solutions be effectively merged without completely re­solving the Structure from Motion problem? Papers V­-VI introduce an effective method for merging and shows the effectiveness through experiments of real and simulated data. Paper VII considers the matching problem for point clouds and proposes minimal solvers that allows for deformation ofeach point cloud. Experiments show that the method robustly matches point clouds with drift in the SfM solution
    corecore