5,222 research outputs found

    Robust Localized Multi-view Subspace Clustering

    Full text link
    In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of real-world applications, the confidence levels of samples in the same view may also vary. Thus considering a unified weight for a view may lead to suboptimal solutions. In this paper, we propose a novel localized multi-view subspace clustering model that considers the confidence levels of both views and samples. By assigning weight to each sample under each view properly, we can obtain a robust consensus representation via fusing the noiseless structures among views and samples. We further develop a regularizer on weight parameters based on the convex conjugacy theory, and samples weights are determined in an adaptive manner. An efficient iterative algorithm is developed with a convergence guarantee. Experimental results on four benchmarks demonstrate the correctness and effectiveness of the proposed model.Comment: 7 page

    Feature Concatenation Multi-view Subspace Clustering

    Full text link
    Multi-view clustering aims to achieve more promising clustering results than single-view clustering by exploring the multi-view information. Since statistic properties of different views are diverse, even incompatible, few approaches implement multi-view clustering based on the concatenated features directly. However, feature concatenation is a natural way to combine multiple views. To this end, this paper proposes a novel multi-view subspace clustering approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC). Specifically, by exploring the consensus information, multi-view data are concatenated into a joint representation firstly, then, l2,1l_{2,1}-norm is integrated into the objective function to deal with the sample-specific and cluster-specific corruptions of multiple views for benefiting the clustering performance. Furthermore, by introducing graph Laplacians of multiple views, a graph regularized FCMSC is also introduced to explore both the consensus information and complementary information for clustering. It is noteworthy that the obtained coefficient matrix is not derived by directly applying the Low-Rank Representation (LRR) to the joint view representation simply. Finally, an effective algorithm based on the Augmented Lagrangian Multiplier (ALM) is designed to optimized the objective functions. Comprehensive experiments on six real world datasets illustrate the superiority of the proposed methods over several state-of-the-art approaches for multi-view clustering

    Low-rank Kernel Learning for Graph-based Clustering

    Full text link
    Constructing the adjacency graph is fundamental to graph-based clustering. Graph learning in kernel space has shown impressive performance on a number of benchmark data sets. However, its performance is largely determined by the chosen kernel matrix. To address this issue, the previous multiple kernel learning algorithm has been applied to learn an optimal kernel from a group of predefined kernels. This approach might be sensitive to noise and limits the representation ability of the consensus kernel. In contrast to existing methods, we propose to learn a low-rank kernel matrix which exploits the similarity nature of the kernel matrix and seeks an optimal kernel from the neighborhood of candidate kernels. By formulating graph construction and kernel learning in a unified framework, the graph and consensus kernel can be iteratively enhanced by each other. Extensive experimental results validate the efficacy of the proposed method

    Guided Co-training for Large-Scale Multi-View Spectral Clustering

    Full text link
    In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clustering methods are based on it. Unfortunately, they have limited applicability to large-scale data due to the high computational complexity of spectral clustering. In this work, we propose a novel multi-view spectral clustering method for large-scale data. Our approach is structured under the guided co-training scheme to fuse distinct views, and uses the sampling technique to accelerate spectral clustering. More specifically, we first select pp (≪n\ll n) landmark points and then approximate the eigen-decomposition accordingly. The augmented view, which is essential to guided co-training process, can then be quickly determined by our method. The proposed algorithm scales linearly with the number of given data. Extensive experiments have been performed and the results support the advantage of our method for handling the large-scale multi-view situation

    Convex Sparse Spectral Clustering: Single-view to Multi-view

    Full text link
    Spectral Clustering (SC) is one of the most widely used methods for data clustering. It first finds a low-dimensonal embedding UU of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on U⊤U^\top to get the final clustering result. In this work, we observe that, in the ideal case, UU⊤UU^\top should be block diagonal and thus sparse. Therefore we propose the Sparse Spectral Clustering (SSC) method which extends SC with sparse regularization on UU⊤UU^\top. To address the computational issue of the nonconvex SSC model, we propose a novel convex relaxation of SSC based on the convex hull of the fixed rank projection matrices. Then the convex SSC model can be efficiently solved by the Alternating Direction Method of \canyi{Multipliers} (ADMM). Furthermore, we propose the Pairwise Sparse Spectral Clustering (PSSC) which extends SSC to boost the clustering performance by using the multi-view information of data. Experimental comparisons with several baselines on real-world datasets testify to the efficacy of our proposed methods

    Joint Adaptive Neighbours and Metric Learning for Multi-view Subspace Clustering

    Full text link
    Due to the existence of various views or representations in many real-world data, multi-view learning has drawn much attention recently. Multi-view spectral clustering methods based on similarity matrixes or graphs are pretty popular. Generally, these algorithms learn informative graphs by directly utilizing original data. However, in the real-world applications, original data often contain noises and outliers that lead to unreliable graphs. In addition, different views may have different contributions to data clustering. In this paper, a novel Multiview Subspace Clustering method unifying Adaptive neighbours and Metric learning (MSCAM), is proposed to address the above problems. In this method, we use the subspace representations of different views to adaptively learn a consensus similarity matrix, uncovering the subspace structure and avoiding noisy nature of original data. For all views, we also learn different Mahalanobis matrixes that parameterize the squared distances and consider the contributions of different views. Further, we constrain the graph constructed by the similarity matrix to have exact c (c is the number of clusters) connected components. An iterative algorithm is developed to solve this optimization problem. Moreover, experiments on a synthetic dataset and different real-world datasets demonstrate the effectiveness of MSCAM.Comment: 9 page

    A Survey on Multi-Task Learning

    Full text link
    Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach, and decomposition approach, and then discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing are reviewed to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works. Finally, we present theoretical analyses and discuss several future directions for MTL

    Deep Multimodal Subspace Clustering Networks

    Full text link
    We present convolutional neural network (CNN) based approaches for unsupervised multimodal subspace clustering. The proposed framework consists of three main stages - multimodal encoder, self-expressive layer, and multimodal decoder. The encoder takes multimodal data as input and fuses them to a latent space representation. The self-expressive layer is responsible for enforcing the self-expressiveness property and acquiring an affinity matrix corresponding to the data points. The decoder reconstructs the original input data. The network uses the distance between the decoder's reconstruction and the original input in its training. We investigate early, late and intermediate fusion techniques and propose three different encoders corresponding to them for spatial fusion. The self-expressive layers and multimodal decoders are essentially the same for different spatial fusion-based approaches. In addition to various spatial fusion-based methods, an affinity fusion-based network is also proposed in which the self-expressive layer corresponding to different modalities is enforced to be the same. Extensive experiments on three datasets show that the proposed methods significantly outperform the state-of-the-art multimodal subspace clustering methods

    A Survey on Multi-View Clustering

    Full text link
    With advances in information acquisition technologies, multi-view data become ubiquitous. Multi-view learning has thus become more and more popular in machine learning and data mining fields. Multi-view unsupervised or semi-supervised learning, such as co-training, co-regularization has gained considerable attention. Although recently, multi-view clustering (MVC) methods have been developed rapidly, there has not been a survey to summarize and analyze the current progress. Therefore, this paper reviews the common strategies for combining multiple views of data and based on this summary we propose a novel taxonomy of the MVC approaches. We further discuss the relationships between MVC and multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated. To promote future development of MVC, we envision several open problems that may require further investigation and thorough examination.Comment: 17 pages, 4 figure

    Neither Global Nor Local: A Hierarchical Robust Subspace Clustering For Image Data

    Full text link
    In this paper, we consider the problem of subspace clustering in presence of contiguous noise, occlusion and disguise. We argue that self-expressive representation of data in current state-of-the-art approaches is severely sensitive to occlusions and complex real-world noises. To alleviate this problem, we propose a hierarchical framework that brings robustness of local patches-based representations and discriminant property of global representations together. This approach consists of 1) a top-down stage, in which the input data is subject to repeated division to smaller patches and 2) a bottom-up stage, in which the low rank embedding of local patches in field of view of a corresponding patch in upper level are merged on a Grassmann manifold. This summarized information provides two key information for the corresponding patch on the upper level: cannot-links and recommended-links. This information is employed for computing a self-expressive representation of each patch at upper levels using a weighted sparse group lasso optimization problem. Numerical results on several real data sets confirm the efficiency of our approach
    • …
    corecore