303 research outputs found

    Design of Power-Efficient Structures of the CAM Cell using a New Approach in QCA Nanoelectronics Technology

    Get PDF
    Quantum-dot Cellular Automata (QCA) is a new emerging nano-electronic technology. Owing to its many fa-vorable features such as low energy requirements, high speed, and small size, QCA is being actively suggested as a future CMOS replacement by researchers. Many digital circuits have been introduced in QCA technology, most of them aiming to reach the function with optimum construction in terms of area, cell count and power consumption. The memory circuit is the main building block in the digital system therefore the researchers paid attention to design the memory cells with minimum requirements. In this paper, a new methodology is intro-duced to design two forms of CAM cell. The proposed designs required two 2:1 multiplexers, one OR gate and one inverter. The first proposed design reduces the power consumption by 53.3%, 35% and 25.9% at (0.5 Ek, 1 Ek, and 1.5 Ek) while the second design by 53.2%, 31.9% and 20.5% (0.5 Ek, 1 Ek, and 1.5 Ek) respectively

    Efficient and Robust Delay-Insensitive QCA (Quantum-Dot Cellular Automata) Design

    Get PDF
    The concept of clocking for QCA, referred to as the four-phase clocking, is widely used. However, inherited characteristics of QCA, such as the way to hold state, the way to synchronize data flows, and the way to power QCA cells, make the design of QCA circuits quite different from VLSI and introduce a variety of new design challenges. The most severe challenges are due to the fact that the overall timing of a QCA circuit is mainly dependent upon its layout. This issue is commonly referred to as the layout =timing problem. To circumvent the problem, a novel self-timed circuit design technique referred to as the locally synchronous, globally asynchronous design for QCA has been recently proposed. The proposed technique can significantly reduce the layout-timing dependency from the global network of QCA devices in a circuit; therefore, considerably flexible QCA circuit design is be possible. Also, the proposed technique is more scalable in designing large-scale systems. Since a less number of cells is used, the overall area is smaller and the manufacturability is better. In this paper, numerous multi-bit adder designs are considered to demonstrate the layout efficiency and robustness of the proposed globally asynchronous QCA design techniqu

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    Design and analysis of efficient QCA reversible adders

    Get PDF
    Quantum-dot cellular automata (QCA) as an emerging nanotechnology are envisioned to overcome the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the system. Therefore, reversible logic, which significantly controls the information flow of the system, is deemed suitable to achieve ultra-low-power structures. In order to benefit from the opportunities QCA and reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-layer crossover scheme. The new full-adder significantly advances previous designs in terms of the optimization metrics, namely cell count, area, and delay. The proposed efficient full-adder is then used to design reversible ripple-carry adders (RCAs) with different sizes (i.e., 4, 8, and 16 bits). It is demonstrated that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and architecture

    Flip Flops Design in Quantum Dot Cellular Automata Technology: Towards Digitization

    Get PDF
    Quantum-Dot Cellular Automata (QCA) is a transistor-less technology. In QCA, Columbic repulsion between electrons in the quantum dots makes data transfer possible. This paper presents the design of flip flops using a proposed Rotated-Normal Cells with Displacement (RND) inverter and a cell interaction method. The SR latch, SR Flip Flop (FF), D FF, and T FF are developed using QCA. The proposed D FF gives total and average energy dissipation of 1.31e-002eV and 1.19e-003eV respectively. It also gives a delay of 1 clock phase.  The Proposed T FF provides total and average energy dissipation of 2.40e-002eV and 2.18e-003eV respectively, depicting efficient D FF and T FF in energy dissipation. The proposed SR Flip flop design gives an efficient area. The FFs with the proposed RND inverter and cell interaction method can be the best choice for future Nano communication to construct Nano circuits with less energy dissipation and high speed

    NOVEL SINGLE LAYER FAULT TOLERANCE RCA CONSTRUCTION FOR QCA TECHNOLOGY

    Get PDF
    Quantum-dot Cellular Automata (QCA) technology has become a promising and accessible candidate that can be used for digital circuits implementation at Nanoscale, but the circuit design in the QCA technology has been limited due to fabrication high-defect rate. So, this issue is an interesting research topic in the QCA circuits design. In this study, a novel 3-input Fault Tolerance (FT) Majority Gate (MG) is developed. Accordingly, an efficient 1-bit QCA full adder is developed using the developed 3-input MG. Then, a new 4-bit FT QCA Ripple Carry Adder (RCA) is developed based on the proposed 1-bit FT QCA FA. The developed circuits are implemented in the QCADesigner tool version 2.0.3. The results indicate that the developed QCA circuits provide advantages compared to other QCA circuits in terms of double and single cell missing defect, area and delay time

    Ab initio Molecular Dynamics Simulations of Field-Coupled Nanocomputing Molecules

    Get PDF
    Molecular Field-Coupled Nanocomputing (FCN) represents one of the most promising solutions to overcome the issues introduced by CMOS scaling. It encodes the information in the molecule charge distribution and propagates it through electrostatic intermolecular interaction. The need for charge transport is overcome, hugely reducing power dissipation. At the current state-of-the-art, the analysis of molecular FCN is mostly based on quantum mechanics techniques, or ab initio evaluated transcharacteristics. In all the cases, studies mainly consider the position of charges/atoms to be fixed. In a realistic situation, the position of atoms, thus the geometry, is subjected to molecular vibrations. In this work, we analyse the impact of molecular vibrations on the charge distribution of the 1,4-diallyl butane. We employ Ab Initio Molecular Dynamics to provide qualitative and quantitative results which describe the effects of temperature and electric fields on molecule charge distribution, taking into account the effects of molecular vibrations. The molecules are studied at near-absolute zero, cryogenic and ambient temperature conditions, showing promising results which proceed towards the assessment of the molecular FCN technology as a possible candidate for future low-power digital electronics. From a modelling perspective, the diallyl butane demonstrates good robustness against molecular vibrations, further confirming the possibility to use static transcharacteristics to analyse molecular circuits
    corecore