1,724 research outputs found

    Knowledge-Based Control for Robot Arm

    Get PDF

    Modeling Evacuation Risk Using a Stochastic Process Formulation of Mesoscopic Dynamic Network Loading

    Get PDF
    One of the actions usually conducted to limit exposure to a hazardous event is the evacuation of the area that is subject to the effects of the event itself. This involves modifications both to demand (a large number of users all want to move together) and to supply (the transport network may experience changes in capacity, unusable roads, etc.). In order to forecast the traffic evolution in a network during an evacuation, a natural choice is to adopt an approach based on Dynamic Traffic Assignment (DTA) models. However, such models typically give a deterministic prediction of future conditions, whereas evacuations are subject to considerable uncertainty. The aim of the present paper is to describe an evacuation approach for decision support during emergencies that directly predicts the time-evolution of the probability of evacuating users from an area, formulated within a discrete-time stochastic process modelling framework. The approach is applied to a small artificial case as well as a real-life network, where we estimate users' probabilities to reach a desired safe destination and analyze time dependent risk factors in an evacuation scenario

    Time Efficiency of Point-Of-Sale Payment Methods: Empirical Results for Cash, Cards, and Mobile Payments

    Get PDF
    Preprint publikacji https://doi.org/10.1007/978-3-642-40654-6_19We propose a novel approach for the time efficiency study of payment process at Point-Of-Sale (POS). A wide range of payment methods from cash and standard cards to contactless cards, RFID stickers and mobile payments (NFC and remote) was analysed. Transactions were timed by means of digital chronography of video material recorded in the biggest chain of convenience stores in Poland. Our results confirm that cash is a significantly faster payment method than traditional payment card with a magnetic stripe or EMV chip. However, the innovative payment methods, such as contactless cards and NFC mobile payments, are competitive to cash in terms of time efficiency. Contactless cards used in offline mode and without printing paper slips are the first popular electronic payment method in history faster than cash. Our results could be applied to optimise the payment process at POS as well as to develop innovative and efficient payment solutions

    Resilience of modern power distribution networks with active coordination of EVs and smart restoration

    Get PDF
    Abstract In this modern era of cyber–physical–social systems, there is a need of dynamic coordination strategies for electric vehicles (EVs) to enhance the resilience of modern power distribution networks (MPDNs). This paper proposes a two‐stage EV coordination framework for MPDN smart restoration. The first stage is to introduce a novel proactive EV prepositioning model to optimize planning prior to a rare event, and thereby enhance the MPDN survivability in its immediate aftermath. The second stage involves creating an advanced spatial–temporal EV dispatch model to maximize the number of available EVs for discharging, thereby improving the MPDN recovery after a rare event. The proposed framework also includes an information system to further enhance MPDN resilience by effectively organizing data exchange among intelligent transportation system and smart charging system, and EV users. In addition, a novel bidirectional geographic graph is proposed to optimize travel plans, covering a large penetration of EVs and considering variations in traffic conditions. The effectiveness is assessed on a modified IEEE 123‐node test feeder with real‐world transportation and charging infrastructure. The results demonstrate a significant improvement in MPDN resilience with smart restoration strategies. The validation and sensitivity analyses evidence a significant superiority of the proposed framework

    Parzsweep: A Novel Parallel Algorithm for Volume Rendering of Regular Datasets

    Get PDF
    The sweep paradigm for volume rendering has previously been successfully applied with irregular grids. This thesis describes a parallel volume rendering algorithm called PARZSweep for regular grids that utilizes the sweep paradigm. The sweep paradigm is a concept where a plane sweeps the data volume parallel to the viewing direction. As the sweeping proceeds in the increasing order of z, the faces incident on the vertices are projected onto the viewing volume to constitute to the image. The sweeping ensures that all faces are projected in the correct order and the image thus obtained is very accurate in its details. PARZSweep is an extension of a serial algorithm for regular grids called RZSweep. The hypothesis of this research is that a parallel version of RZSweep can be designed and implemented which will utilize multiple processors to reduce rendering times. PARZSweep follows an approach called image-based task scheduling or tiling. This approach divides the image space into tiles and allocates each tile to a processor for individual rendering. The sub images are composite to form a complete final image. PARZSweep uses a shared memory architecture in order to take advantage of inherent cache coherency for faster communication between processor. Experiments were conducted comparing RZSweep and PARZSweep with respect to prerendering times, rendering times and image quality. RZSweep and PARZSweep have approximately the same prerendering costs, produce exactly the same images and PARZSweep substantially reduced rendering times. PARZSweep was evaluated for scalability with respect to the number of tiles and number of processors. Scalability results were disappointing due to uneven data distribution
    corecore