5,784 research outputs found

    Al-Robotics team: A cooperative multi-unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge

    Get PDF
    The Al-Robotics team was selected as one of the 25 finalist teams out of 143 applications received to participate in the first edition of the Mohamed Bin Zayed International Robotic Challenge (MBZIRC), held in 2017. In particular, one of the competition Challenges offered us the opportunity to develop a cooperative approach with multiple unmanned aerial vehicles (UAVs) searching, picking up, and dropping static and moving objects. This paper presents the approach that our team Al-Robotics followed to address that Challenge 3 of the MBZIRC. First, we overview the overall architecture of the system, with the different modules involved. Second, we describe the procedure that we followed to design the aerial platforms, as well as all their onboard components. Then, we explain the techniques that we used to develop the software functionalities of the system. Finally, we discuss our experimental results and the lessons that we learned before and during the competition. The cooperative approach was validated with fully autonomous missions in experiments previous to the actual competition. We also analyze the results that we obtained during the competition trials.Unión Europea H2020 73166

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Strategies for Optimising DRAM Repair

    Get PDF
    Dynamic Random Access Memories (DRAM) are large complex devices, prone to defects during manufacture. Yield is improved by the provision of redundant structures used to repair these defects. This redundancy is often implemented by the provision of excess memory capacity and programmable address logic allowing the replacement of faulty cells within the memory array. As the memory capacity of DRAM devices has increased, so has the complexity of their redundant structures, introducing increasingly complex restrictions and interdependencies upon the use of this redundant capacity. Currently redundancy analysis algorithms solving the problem of optimally allocating this redundant capacity must be manually customised for each new device. Compromises made to reduce the complexity, and human error, reduce the efficacy of these algorithms. This thesis develops a methodology for automating the customisation of these redundancy analysis algorithms. Included are: a modelling language describing the redundant structures (including the restrictions and interdependencies placed upon their use), algorithms manipulating this model to generate redundancy analysis algorithms, and methods for translating those algorithms into executable code. Finally these concepts are used to develop a prototype software tool capable of generating redundancy analysis algorithms customised for a specified device

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Scalable Architecture for Integrated Batch and Streaming Analysis of Big Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2015As Big Data processing problems evolve, many modern applications demonstrate special characteristics. Data exists in the form of both large historical datasets and high-speed real-time streams, and many analysis pipelines require integrated parallel batch processing and stream processing. Despite the large size of the whole dataset, most analyses focus on specific subsets according to certain criteria. Correspondingly, integrated support for efficient queries and post- query analysis is required. To address the system-level requirements brought by such characteristics, this dissertation proposes a scalable architecture for integrated queries, batch analysis, and streaming analysis of Big Data in the cloud. We verify its effectiveness using a representative application domain - social media data analysis - and tackle related research challenges emerging from each module of the architecture by integrating and extending multiple state-of-the-art Big Data storage and processing systems. In the storage layer, we reveal that existing text indexing techniques do not work well for the unique queries of social data, which put constraints on both textual content and social context. To address this issue, we propose a flexible indexing framework over NoSQL databases to support fully customizable index structures, which can embed necessary social context information for efficient queries. The batch analysis module demonstrates that analysis workflows consist of multiple algorithms with different computation and communication patterns, which are suitable for different processing frameworks. To achieve efficient workflows, we build an integrated analysis stack based on YARN, and make novel use of customized indices in developing sophisticated analysis algorithms. In the streaming analysis module, the high-dimensional data representation of social media streams poses special challenges to the problem of parallel stream clustering. Due to the sparsity of the high-dimensional data, traditional synchronization method becomes expensive and severely impacts the scalability of the algorithm. Therefore, we design a novel strategy that broadcasts the incremental changes rather than the whole centroids of the clusters to achieve scalable parallel stream clustering algorithms. Performance tests using real applications show that our solutions for parallel data loading/indexing, queries, analysis tasks, and stream clustering all significantly outperform implementations using current state-of-the-art technologies
    corecore