38,226 research outputs found

    A novel approach of palm-line extraction

    Get PDF
    Author name used in this publication: David ZhangBiometrics Research Centre, Department of ComputingVersion of RecordPublishe

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    UBSegNet: Unified Biometric Region of Interest Segmentation Network

    Full text link
    Digital human identity management, can now be seen as a social necessity, as it is essentially required in almost every public sector such as, financial inclusions, security, banking, social networking e.t.c. Hence, in today's rampantly emerging world with so many adversarial entities, relying on a single biometric trait is being too optimistic. In this paper, we have proposed a novel end-to-end, Unified Biometric ROI Segmentation Network (UBSegNet), for extracting region of interest from five different biometric traits viz. face, iris, palm, knuckle and 4-slap fingerprint. The architecture of the proposed UBSegNet consists of two stages: (i) Trait classification and (ii) Trait localization. For these stages, we have used a state of the art region based convolutional neural network (RCNN), comprising of three major parts namely convolutional layers, region proposal network (RPN) along with classification and regression heads. The model has been evaluated over various huge publicly available biometric databases. To the best of our knowledge this is the first unified architecture proposed, segmenting multiple biometric traits. It has been tested over around 5000 * 5 = 25,000 images (5000 images per trait) and produces very good results. Our work on unified biometric segmentation, opens up the vast opportunities in the field of multiple biometric traits based authentication systems.Comment: 4th Asian Conference on Pattern Recognition (ACPR 2017

    PVSNet: Palm Vein Authentication Siamese Network Trained using Triplet Loss and Adaptive Hard Mining by Learning Enforced Domain Specific Features

    Full text link
    Designing an end-to-end deep learning network to match the biometric features with limited training samples is an extremely challenging task. To address this problem, we propose a new way to design an end-to-end deep CNN framework i.e., PVSNet that works in two major steps: first, an encoder-decoder network is used to learn generative domain-specific features followed by a Siamese network in which convolutional layers are pre-trained in an unsupervised fashion as an autoencoder. The proposed model is trained via triplet loss function that is adjusted for learning feature embeddings in a way that minimizes the distance between embedding-pairs from the same subject and maximizes the distance with those from different subjects, with a margin. In particular, a triplet Siamese matching network using an adaptive margin based hard negative mining has been suggested. The hyper-parameters associated with the training strategy, like the adaptive margin, have been tuned to make the learning more effective on biometric datasets. In extensive experimentation, the proposed network outperforms most of the existing deep learning solutions on three type of typical vein datasets which clearly demonstrates the effectiveness of our proposed method.Comment: Accepted in 5th IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), 2019, Hyderabad, Indi
    corecore